Skip to main content
Log in

Regional distribution of glucose in mouse brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

After rapid inactivation of the enzymes responsible for glucose metabolism by microwave irradiation, concentrations of glucose in 20 regions of the mouse brain were estimated with combined gas chromatography-mass spectrometry (GC-MS). The highest concentrations of glucose were found in the periventricular nuclei of the hypothalamus and nucleus preopticus (P<0.05). The septum and nucleus amygdaloideus showed significantly higher glucose concentration compared with the cerebral neocortex, olfactory bulb, corpus striatum, cingulum, fornix, colliculus inferior, cerebellar cortex, corpus geniculatum laterale, substantia nigra, and nucleus ruber (P<0.05). The glucose concentration in the substantia nigra and nucleus ruber was significantly lower than in the other regions (P<0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balcom, G. J., Lenox, R. H., andMyerhoff, J. L. 1975. Regional γ-aminobutyric acid levels in rat brain determined after microwave fixation. J. Neurochem. 24:609–613.

    Google Scholar 

  2. Balcom, G. J., Lenox, R. H., andMeyerhoff, J. L. 1976. Regional glutamate levels in rat brain determined after microwave fixation. J. Neurochem. 26:423–425.

    Google Scholar 

  3. Bernard, G. R. 1974. Microwave irradiation as a generator of heat for histological fixation. Stain Technol. 49:215–224.

    Google Scholar 

  4. Chizhov, O. S., Molodtsov, N. V., andKochetkov, N. K. 1967. Mass spectrometry of trimethylsilyl esthers of carbohydrates. Carbohydr. Res. 4:273–276.

    Google Scholar 

  5. Dejongh, D. C., Radford, T., Hribar, J. D., Hanessian, S., Bieber, M., Dawson, G., andSweeley, C. C. 1969. Analysis of trimethylsilyl derivatives of carbohydrates by gas chromatography and mass spectrometry. J. Am. Chem. Soc. 91:1728–1740.

    Google Scholar 

  6. Ditter, D. S. 1961. Pages 1–19,in Biological Handbooks: Blood and Other Body Fluids. Fed. Proc. Washington, D.C.

  7. Dodd, P. R., Bradford, H. F., andChain, E. E. 1971. The metabolism of glucose-6-phosphate by mammalian cerebral cortex in vivo. Biochem. J. 125:1027–1038.

    Google Scholar 

  8. Fidone, S. J., Weibraub, S. T., andStavinoha, W. B. 1976. Acetylcholine content of normal and denervated cat carotid bodies measured by pyrolysis gas chromatography/mass fragmentometry. J. Neurochem. 26:1047–1049.

    Google Scholar 

  9. Folbergrová, J., Lowry, O. H., andPassoneau, J. V. 1970. Changes in metabolites of the energy reserves in individual layers of mouse cerebral cortex and subjacent white matter during ischaemia and anaesthesia. J. Neurochem. 17:1155–1162.

    Google Scholar 

  10. Gehrke, C. W., Roach, D., Zunwalr, W., Stalling, D. L., andWall, I. I. 1968. Gas-liquid chromatography of amino acids in proteins and biological substances; macro, semimicro and micromethods. Pages 27–38, in Anal. Biochem. Laboratories, in Library of Congress Catalog Card No. 68-57507.

  11. Jenden, D. J., Roch, M., andBooth, R. A. 1973. Simultaneous measurement of endogenous and deuterium-labeled tracer variants of choline and acetylcholine in subpicomole quantities by gas chromatography/mass spectrometry. Anal. Biochem. 55:438–448.

    Google Scholar 

  12. Karoum, F., Gillin, J. C., andWyatt, R. T. 1975. Mass fragmentographic determination of some acidic and alcoholic metabolites of biogenetic amines in the rat brain. J. Neurochem. 25:653–658.

    Google Scholar 

  13. McAdoo, D. J., andCoggeshall, R. E. 1976. Gas chromatographic-mass spectrometric analysis of biogenetic amines in identified neurons and tissues of Hirudo medicinalis. J. Neurochem. 26:163–167.

    Google Scholar 

  14. Medina, M. A., Jones, D. J., Stavinoha, W. B., andRoss, D. H. 1975. The levels of labile intermediary metabolites in mouse brain following rapid tissue fixation with microwave irradiation. J. Neurochem. 24:223–227.

    Google Scholar 

  15. Nelson, S. R., andMantz, M. L. 1971. Metabolite levels in brain after heating (microwave radiation), the decapitated mouse head. Fed. Proc. 30:496.

    Google Scholar 

  16. Reivich, M. 1974. Blood flow metabolism couple in brain. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 53:125–140.

    Google Scholar 

  17. Rosen, S. I. 1970. Glucose-6-phosphate hydrolysing activity in the cerebellum of the mouse, rat, hamster and marmoset. Acta Histochem. 36:44–53.

    Google Scholar 

  18. Rudeman, N. B., Ross, P. S., Berger, M., andGoodman, M. N. 1974. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats. Biochem. J. 138:1–10.

    Google Scholar 

  19. Sacks, W., andSacks, S. 1968. Conversion of glucose phosphate-14C to glucose-14C in passage through human brain in vivo. J. Appl. Physiol. 24:817–827.

    Google Scholar 

  20. Schmidt, M. J., Schmidt, D. E., andRobison, G. A. 1971. Cyclic adenosine monophosphate in brain areas: microwave irradiation as a means of tissue fixation. Science (NY) 173:1142–1143.

    Google Scholar 

  21. Shimada, M., Kurimoto, K., Wada, F., Hino, O., Suginoshita, K., andKihara, T. 1971. Quantitative trial of amino acids in the mouse brain loci by gas-liquid chromatography. Acta Anat. Nippon 46:125–135.

    Google Scholar 

  22. Shimada, M., Kihara, T., Kurimoto, K., andWatanabe, M. 1974. Incorporation of14C from [U-14C]glucose into free amino acids in mouse brain regions under cyanide intoxication. J. Neurochem. 23:379–384.

    Google Scholar 

  23. Sjöquist, B., Dailey, J., Sedvall, G., andAnggard, E. 1973. Mass fragmentographic assay of homovanillic acid in brain tissue. J. Neurochem. 20:729–733.

    Google Scholar 

  24. Sokoloff, L. 1975. Determination of local cerebral glucose consumption. Pages 1–8,in Haper, A. M., Jennet, W. B., Miller, J. A., andRowan, J. O. (eds.), Blood Flow and Metabolism in the Brain, Churchill Livingstone, Edinburgh.

    Google Scholar 

  25. Sokoloff, L. 1976. Circulation and energy metabolism of the brain. Pages 388–413,in Siegel, G. J., Albers, R. W., Katzman, R., andAgranoff, B. W. (eds.), Basic Neurochemistry, Little, Brown & Company, Boston.

    Google Scholar 

  26. Stavinoha, W. B., Weitraub, S. T., andModak, A. T. 1973. Use of microwave heating to inactivate cholinetherase in the rat brain prior to analysis for acetylcholine. J. Neurochem. 20:361–371.

    Google Scholar 

  27. Stavinoha, W. B., Weitraub, S. T., andModak, A. T. 1974. Regional concentrations of choline and acetylcholine in the rat brain. J. Neurochem. 23:885–886.

    Google Scholar 

  28. Stewart, M. A., Rhee, V., Kurien, M. M., andSherman, W. R. 1969. Gas chromatographic analysis of myo-inositol in microgram samples of brain. Biochim. Biophys. Acta 192:361–363.

    Google Scholar 

  29. Strong, J. M., Fies, J. W., andAtkinson, A. J. 1973. Quadrupole mass fragmentography in drug research. Pages 310–320,in Proceedings of the First International Conference on Stable Isotopes in Chemistry, Biology and Medicine.

  30. Swaab, D. F. 1971. Pitfalls in the use of rapid freezing for stopping brain and spinal cord metabolism in rat and mouse. J. Neurochem. 18:2085–2092.

    Google Scholar 

  31. Sweeley, C. C., Bentley, R., Makita, M., andWell, W. W. 1963. Chromatography of trimethylsilyl derivatives of sugers and related substances. J. Am. Chem. Soc. 85:2497–2507.

    Google Scholar 

  32. Wiecko, J., andSherman, W. R. 1975. Mass spectral study of cyclic alkaneboronates of sugar phosphates. Evidence of interaction between the phosphate group and boron under electron-impact conditions. Org. Mass Spectrom. 10:1007–1020.

    Google Scholar 

  33. Zilversmit, D. B. 1960. The design and analysis of isotope experiments. Am. J. Med. 27(2):832–848.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimada, M., Kihara, T., Watanabe, M. et al. Regional distribution of glucose in mouse brain. Neurochem Res 2, 595–603 (1977). https://doi.org/10.1007/BF00963774

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963774

Keywords

Navigation