Skip to main content
Log in

Photosynthetische Sulfidoxydation Grüner pflanzen

Photosynthetic oxidation of sulphide by green plants. II

II. Mitteilung Wirkung von Stoffwechselinhibitoren

  • Published:
Planta Aims and scope Submit manuscript

Summary

The photosynthetic oxidation of sulphide by green plants is inhibited by DCMU, o-phenanthroline and hydroxylamine. This means that reaction system II of photosynthesis is necessary for the oxidation reaction. — The powerful inhibitors of photophosphorylation, antimycin A and carbonyl-cyanide-phenylhydrazone, also depress the oxidation rate. This effect may be a secondary one, due to a diminished supply of necessary ATP.

Mn-deficiency in the organisms results in an increase of S---oxidation, indicating that S-- is oxidized by the (OH)-radicals involved in the O2-evolving system of photosynthesis according to the following equation:

$$2(OH) + 2H^ + + S^--- \to 2H^ + + 2OH^--- + S^0 .$$

Salicylaldoxime in rather high concentrations likewise stimulates the photosynthetic oxidation of sulphide. Concentrations that completely block photosynthetic electron flow also stop sulphide oxidation. On the other hand, concentrations of this inhibitor which only lower photosynthetic electron flow bring about a marked increase of sulphide oxidation. We interpret this effect according to the concept of two photochemical systems that interact in series in the following way: salicylaldoxime decreases electron flow between the two reaction systems; reaction system I now makes available electrons from the sulphide ion which can enter the remaining lowered photosynthetic electron flow.

Ferrous ions are necessary for this oxidation reaction and may take part in enzymatic reactions involved in this process.

Zusammenfassung

  1. 1.

    Die das Reaktionssystem II der Photosynthese hemmenden Substanzen DCMU, o-Phenanthrolin und Hydroxylamin unterbinden auch die photosynthetische S---Oxydation.

  2. 2.

    Die Phosphorylierungsgifte Antimycin A und Carbonylcyanidphenylhydrazon hemmen Photosynthese und Sulfidoxydation über Stunden hinaus.

  3. 3.

    Mn-Mangel führt zu einer Steigerung der S---Oxydation, was den Schluß zuläßt, daß die Reaktion im O2-entwickelnden System abläuft.

  4. 4.

    Ein Zusatz von Salicylaldoxim hat ebenfalls eine Beschleunigung der S---Oxydation zur Folge. Dies deutet — zumindest für den Fall der Salicylaldoxim-Behandlung — auf eine Oxydation des Sulfids im Elektronentransport nach der Hemmstelle des Cu-Komplexbildners.

  5. 5.

    Eisen ist für den Vorgang notwendig und läßt an eine Beteiligung Fe-haltiger Enzyme denken.

  6. 6.

    Im diskutierten Photosyntheseschema ist S-- allein schon wegen seiner Redox-Potentiale ein möglicher Elektronendonator für die CO2-Reduktion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCMU:

3-(3,4-Dichlorphenyl)-1,1-dimethylharnstoff

CMU:

3-(p-Chlorphenyl)-1,1-dimethylharnstoff

CCP:

Carbonyl-cyanid-phenylhydrazon

Chl a:

Chlorophyll a

Cyt:

Cytochrom

Fd:

Ferredoxin

Literatur

  • Arnon, D.I.: Copper enzymes in isolated, chloroplasts. Polyphenol oxidase inBeta vulgaris. Plant Physiol.24, 1–15 (1949).

    Google Scholar 

  • Bertsch, W. F., J. B.Davidson, and J. R.Azzi: Effects of photosynthetic poisons on delayed light in the millisecond time range. In: Photosynthetic mechanisms of green plants. Natl. Acad. Sci. — Natl. Res. Counc., Washington, 1963, p. 701–710.

    Google Scholar 

  • Bishop, N. I.: The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochim. biophys. Acta (Amst.)27, 205–206 (1958).

    Google Scholar 

  • —: Separation of the oxygen evolving system of photosynthesis from the photochemistry in a mutant ofScenedesmus. Nature (Lond.)195, 55–57 (1962).

    Google Scholar 

  • —: Site of action of copper in photosynthesis. Nature (Lond.)204, 401–402 (1964).

    Google Scholar 

  • —, and H.Gaffron: Photoreduction at λ 705 mμ in adapted algae. Biochem. biophys. Res. Commun.8, 471–476 (1962).

    Google Scholar 

  • ——: On the interrealtion of the mechanisms for oxygen and hydrogen evolution in adapted algae. In: Photosynthetic mechanisms of green plants. Natl. Acad. Sci. — Natl. Res. Counc., Washington, 1963, p. 441–451.

    Google Scholar 

  • Brown, T. E., H. C.Eyster, and H. A.Tanner: Physiological effects of manganese deficiency, In: Trace elements, p. 135–155. New York: Acad. Press 1958.

    Google Scholar 

  • Calvin, M.: Der Weg des Kohlenstoffs in der Photosynthese. Angew. Chem.74, 165–175 (1962).

    Google Scholar 

  • Clayton, R. K.: Molecular physics in photosynthesis. New York: Blaisdell Publ. Co. 1965.

    Google Scholar 

  • Dilley, R. A., and L. P.Vernon: Light-induced conformational changes of chloroplasts produced by high energy intermediates of photophosphorylation. Biochem. biophys. Res. Commun.15, 473–478 (1964a).

    Google Scholar 

  • ——: Changes in light-absorption and light-scattering properties of spinach chloroplasts upon illumination: Relationship to photophosphorylation. Biochemistry3, 817–824 (1964b).

    Google Scholar 

  • Duysens, L. N. M.: Studies on the mechanism of two photosynthetic pigment systems by means of absorption and fluorescence difference spectrophotometry. La Photosynthèse, p. 75–91. Paris: Editions du Centre Nat. Rech. Sci. 1963.

    Google Scholar 

  • —: Photosynthesis. Progr. Biophys.14, 1–104 (1964).

    Google Scholar 

  • —, J.Amesz, and B. M.Kamp: Two photochemical systems in photosynthesis. Nature (Lond.)190, 510–511 (1961).

    Google Scholar 

  • Emerson, R.: Photosynthesis as a function of light intensity and of temperature with different concentrations of chlorophyll. J. gen. Physiol.12, 623–639 (1929).

    Google Scholar 

  • —: Dependence of yield of photosynthesis in long-ware, red on wave-length and intensity of supplementary light. Science125, 746 (1957).

    Google Scholar 

  • —, R. V.Chalmers, and C.Cederstrand: Some factors influencing the longwave limit of photosynthesis. Proc. nat. Acad. Sci. (Wash.)43, 113–143 (1957).

    Google Scholar 

  • Eyster, C., T. E.Brown, and H. A.Tanner: Manganese requirement with respect to respiration and the Hill reaction inChlorella pyrenoidosa. Arch. Biochem.64, 240–241 (1956).

    Google Scholar 

  • Fork, C. D. and W.Urbach: Evidence for the localization of plastocyanin in the electron-transport chain of photosynthesis. Proc. nat. Acad. Sci. (Wash.)53, 1307–1315 (1965).

    Google Scholar 

  • Franck, J.: Fluorescenz des Chlorophylls in Zellen und Chloroplasten und ihre Beziehungen zu den Primärakten der Photosynthese. In: Handbuch der Pflanzenphysiologie (W.Ruhland, ed.), vol. 5, 1 p. 689–735 Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  • Frenkel, A. W.: Light-induced reactions of bacterial chromatophores and their relation to photosynthesis. Ann. Rev. Plant Physiol.10, 53–70 (1959).

    Google Scholar 

  • Gaffron, H.: On dating stages in photochemical evolution. Horizons in biochemistry (M.Kasha, B.Pullmann, eds.), p. 59–89, New York: Academic Press (1962).

    Google Scholar 

  • Gerhardt, B., u. A.Trebst: Photosynthetische Reaktionen in lyophilisierten Zellen der BlaualgeAnacystis. Z. Naturforsch.20b, 879–885 (1965).

    Google Scholar 

  • Gingras, G., and C.Lemasson: A study of the mode of action of 3-(4-chlorophenyl)-1,1-dimethyurea on photosynthesis. Biochim. biophys. Acta (Amst.)109, 67–78 (1965).

    Google Scholar 

  • Green, L. F., J. F.McCarthy, and C. G.King: Inhibition, of respiration and photosynthesis inchlorella pyrenoidosa by organic compunds that inhibit catalysis. J. biol. Chem.128, 447 (1939).

    Google Scholar 

  • Heytler, P. G.: Uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts. Biochemistry2, 357–361 (1963).

    Google Scholar 

  • —, and W. W.Prichard: A new class of uncoupling agents — carbonyl cyanide phenylhydrazones. Biochem. biophys. Res. Commun.7, 272–275 (1962).

    Google Scholar 

  • Katoh, S.: A new copper protein fromChlorella ellipsoidea. Nature (Lond.)186, 533–534 (1960).

    Google Scholar 

  • —, and A.Takamiya: A new leaf copper protein “plastocyanin”, a natural Hill oxidant. Nature (Lond.)189, 665–666 (1961).

    Google Scholar 

  • Kessler, E.: Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. I. Über die Rolle des Mangans bei Photoreduktion und Photosynthese. Planta (Berl.)49, 435–454 (1957).

    Google Scholar 

  • —: Biochemische Variabilität der Photosynthese: Photoreduktion und verwandte Photosynthesetypen. In: Handbuch der Pflanzenphysiologie (W.Ruhland, ed.), Bd. 5/1, S. 951–965. Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  • Kikuchi, T.: Production of H2S from sulfite by a copper-adapted yeast. Plant and Cell Physiol.6, 37–46 (1965a).

    Google Scholar 

  • —: Studies on the pathway of sulfide production in a copper-adapted yeast. Plant and Cell Physiol.6, 195–210 (1965b).

    Google Scholar 

  • Kok, B., and G.Hoch: Spectral changes in photosynthesis. A symposium on light and life (W. D.McElroy, B.Glass, eds.), p. 397–416. Baltimore: Johns Hopkins Press 1961.

    Google Scholar 

  • Losada, M., and D. I.Arnon: In: Metabolic inhibitors, vol. II (R. M.Hochster, and J. H.Quastel, eds.). New York: Acad. Press, 1963. Zit. nach A.Trebst, 1964.

    Google Scholar 

  • Parsons, R.: Hdb. of electrochemical constants. London: Butterworths 1959.

    Google Scholar 

  • Pirson, A.: Ernährungs- und stoffwechselphysiologische Untersuchungen anFontinalis undChlorella. Z. Bot.31, 193–267 (1937).

    Google Scholar 

  • —, C.Tichy u. G.Wilhelmi: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. I. Vergleichende Untersuchungen an Manganmangelkulturen vonAnkistrodesmus. Planta (Berl.)40, 199–253 (1952).

    Google Scholar 

  • Richter, G.: Die Auswirkung von Mangan-Mangel auf Wachstum und Photosynthese bei der BlaualgeAnacystis nidulans. Planta (Berl.)57, 202–214 (1961).

    Google Scholar 

  • Rumberg, B., P.Schmidt-Mende, J.Weikard, and T. H.Witt Correlation between absorption changes and electron transport in photosynthesis. Natl. Acad. Sci. — Natl. Res. Counc., Washington, 1963, p. 18–27.

    Google Scholar 

  • Simonis, W.: Untersuchungen zur Photosynthese-Phosphorylierung, an intakten Algenzellen (Ankistrodesmus braunii) Ber. dtsch. bot. Ges.77 (5)-(13) (1964).

    Google Scholar 

  • Tagawa, K., H. Y.Tsujimoto, and D. I.Arnon: Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc. natl. Acad. Sci. (Wash.)49, 567–572 (1963).

    Google Scholar 

  • Trebst, A.: Zur Hemmung photosynthetischer Reaktionen durch Salicylaldoxim. Z. Naturforsch.18b, 817–821 (1963).

    Google Scholar 

  • —: Neuere Vorstellungen über den Mechanismus der Photosynthese. Ber. dtsch. bot. Ges.77, (123)-(142) (1964).

    Google Scholar 

  • —, H.Eck, and S.Wagner: Effects of quinones and oxygen in the electron transport system of chloroplasts. Photosynthetic mechanisms of green plants. Natl. Acad. Sci. — Natl. Res. Counc., Washington 1963, p. 174–194.

    Google Scholar 

  • Urbach, W., and W.Simonis: Inhibitor studies on the photophosphorylationin vivo by unicellular algae (Ankistrodesmus) with antimycin A, HOQNO, salicylaldoxime, and DCMU. Biochem. biophys. Res. Commun.17, 39–45 (1964).

    Google Scholar 

  • Vernon, L. P., and M.Avron: Photosynthesis. Ann. Rev. Plant Physiol.34, 269–296 (1965).

    Google Scholar 

  • Walter, P., and H. A.Lardy: Effect of antimycin A on oxidative phosphorylation with ferricyanide as electron acceptor. Biochemistry3, 812–816 (1964).

    Google Scholar 

  • Wessels, J. S. C.: The action of some derivatives of phenyl-urethan and of 3-phenyl-1,1-dimethyl-urea on the Hill-reaction. Biochim. biophys. Acta (Amst.)19, 548–549 (1956).

    Google Scholar 

  • Whatley, F. R., M. B.Allen, and D. I.Arnon: Photosynthesis by isolated chloroplasts. VII. Vitamin K and riboflavin phosphate as cofactors of cyclic photophosphorylation. Biochim. biophys. Acta (Amst.)32, 32–46 (1959).

    Google Scholar 

  • Wiessner, W.: Wachstum und Stoffwechsel vonRhodopseudomonas spheroides in Abhängigkeit von der Versorgung mit Mangan und Eisen. Flora (Jena)149, 1–42 (1960).

    Google Scholar 

  • Witt, H. T., A.Müller u. B.Rumberg: Zwei Primärprozesse bei der Photosynthese. Angew. Chemie73, 507–508 (1961 a).

    Google Scholar 

  • ———: Experimental evidence for the mechanism of photosynthesis. Nature (Lond.)191, 194–195 (1961 b).

    Google Scholar 

  • ———: Oxidized cytochrome and chlorophyl C +2 in photosynthesis. Nature (Lond.)192, 967–969 (1961 c).

    Google Scholar 

  • —, B.Rumberg, P.Schmidt-Mende, U.Siggel, B.Skerra, J.Vater u. J.Weikard: Über die Analyse der Photosynthese mit Blitzlicht. Angew. Chemie77, 821–842 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knobloch, K. Photosynthetische Sulfidoxydation Grüner pflanzen. Planta 70, 172–186 (1966). https://doi.org/10.1007/BF00963726

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963726

Navigation