Skip to main content
Log in

Crack tip damage in rubber compounds

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The application of the crack layer theory to fatigue crack propagation (FCP) in rubber compounds is discussed. A crack tip damage evolution coefficientμ is employed to assess the extent of damage as a fraction of the damage associated with critical crack propagation. The results can be expressed in the form

$$\frac{{da}}{{dN}} = \frac{{\beta {\rm T}^2 }}{{\mu T_c - T}} ,$$

where da/dN is the rate of FCP,T is the tearing energy (energy release rate) whose critical value isT c, andβ is a phenomenological constant.

Experimental data for two rubber compounds, previously obtained by other workers, have been analyzed using the crack layer approach. Although damage, sometimes, cannot be easily detected in the case of rubber samples,μ increases during stable crack propagation. The value of the damage coefficientμ evolves differently for each compound approaching unity at catastrophic failure.

Résumé

On discute de l'application de la théorie de la fissure par couches à la propagation d'une fissure de fatigue dans des composants en élastomère. On utilise un coefficientμ d'évolution du dommage à l'extrémité de la fissure pour établir l'étendue du dommage en fonction du dommage correspondant à la propagation critique de la fissure.

Les résultats sont exprimés sous une formeda/an = f(T 2, T c ,β) oùT est la vitesse de relaxation de l'énergie en arrachement,T c sa valeur critique,β une constante phénomélogique etda/dn la vitesse de propagation de la fissure de fatigue.

En utilisant cette approche, on analyse les données expérimentales obtenues par d'autres chercheurs sur deux élastomères. Bien que le dommage ne peut parfois pas être détecté aisément dans des échantillons d'élastomère, on constate queμ s'accroît durant la propagation stable de la fissure. La valeur du coefficient de dommageμ évolue différemment selon lélastomère, et tend vers l'unité lorsque la rupture devient catastrophique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Paris and F. Erdogan,Transactions ASME (1963) 528–534.

  2. R.S. Rivlin and A.G. Thomas,Journal of Polymer Science 10 (1953) 291–318.

    Google Scholar 

  3. H.W. Greensmith,Journal of Applied Polymer Science 7 (1963) 933–1002.

    Google Scholar 

  4. G.L. Lake and P.B. Lindley,Journal of Applied Polymer Science 9 (1965) 1233–1251.

    Google Scholar 

  5. A. Chudnovsky and A. Moet,Polymer Engineering and Science 22 (1982) 922–27.

    Google Scholar 

  6. A. Moet, inFailure of Plastics, Hauser Publishers (1986) 352–355.

  7. M.J. Doyle, Ph.D. thesis, (1971).

  8. M.T. Takemori and R. Kambour,Journal of Materials Science, Letters 16 (1981) 1108–1110.

    Google Scholar 

  9. T.A. Morelli and M.T. Takemori,Journal of Materials Science 18 (1983) 1836–1844.

    Google Scholar 

  10. J. Botsis, A. Moet and A. Chudnovsky,Proceedings, 6th International Conference on Fracture, New Delhi, India (1984).

  11. A. Chudnovksy, NASA Contractor Report, No. 174634 (March 1984).

  12. A. Chudnovsky and A. Moet,Journal of Materials Science 20 (1985) 630–635.

    Google Scholar 

  13. K. Sehanobish, A. Moet and A. Chudnovsky,Polymer 28 (1987) 1315–1320.

    Google Scholar 

  14. A. Chudnovsky, A. Moet, R.J. Bankert, and M.T. Takemori,Journal of Applied Physics 54 (1983) 5562–5567.

    Google Scholar 

  15. P.X. Nguyen and A. Moet,Journal of Vinyl Technology 7 (1985) 140–149.

    Google Scholar 

  16. N. Haddaoui, A. Chudnovsky and A. Moet,Polymer 27 (1986) 1377–1384.

    Google Scholar 

  17. J. Botsis, A. Chudnovsky and A. Moet,International Journal of Fracture 33 (1987) 277–284.

    Google Scholar 

  18. A. Chudnovsky, Transaction of the ASME,Journal of Applied Mechanics (to appear).

  19. A. Chudnovsky and A. Moet,Journal of Elastomers and Plastics 18 (1986) 50–55.

    Google Scholar 

  20. D.S. Dugdale,Journal of the Mechanics and Physics of Solids 8 (1960) 100–104.

    Google Scholar 

  21. G.I. Barenblatt, inAdvances in Applied Mechanics 1962, Academic Press, New York (1962) 55–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aglan, H., Moet, A. Crack tip damage in rubber compounds. Int J Fract 40, 285–294 (1989). https://doi.org/10.1007/BF00963662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963662

Keywords

Navigation