International Journal of Fracture

, Volume 21, Issue 3, pp 229–240 | Cite as

A Griffith crack shielded by a dislocation pile-up

  • B. S. Majumdar
  • S. J. Burns


The dislocation free zone at the tip of a mode III shear crack is analyzed. A pile-up of screw dislocations parallel to the crack front, in anti-plane shear, in the stress field of a crack has been solved using a continuous distribution of dislocations. The crack tip remains sharp and is assumed to satisfy Griffith's fracture criteria using the local crack tip stress intensity factor. The dislocation pile-up shield the sharp crack tip from the applied stress intensity factor by simple addition of each dislocation's negative contribution to the applied stress intensity value. The analysis differs substantially from the well known BCS theory in that the local crack tip fracture criteria enters into the dislocation distributions found.


Stress Intensity Factor Shear Crack Screw Dislocation Fracture Criterion Free Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


On analyse la zone libre de dislocation qui est située à l'extrémité d'une fissure de cisaillement de mode III. On solutionne à l'aide d'une distribution continue de dislocations le problème de l'empilement de dislocation-vis parallèle en front de fissure et situé, en cisaillement antiplanaire, dans le champ de contraintes d'une fissure. On suppose que l'extrémité de la fissure demeure aiguë et qu'elle satisfait au critère de rupture de Griffith, en recourant au facteur d'intensité de contraintes local à fond d'entaille. L'empilement de dislocations protège l'extrémité aiguë de la fissure contre l'influence du facteur d'intensité des contraintes appliquées, du fait d'une addition simple des contributions négatives de chaque dislocation à la valeur de l'intensité de contrainte appliquée. L'analyse diffère substantiellement de la théorie BCS bien connue en ce que les critères de rupture à l'extrémité de la fissure entrent dans la distribution de dislocation trouvée.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Atkinson,International Journal of Fracture 2 (1966) 567–568.Google Scholar
  2. [2]
    N.P. Louat, inProceedings First International Conference on Fracture 1, Sendai, Japan (1965) 117.Google Scholar
  3. [3]
    R.J. Asaro,Journal of Physics F: Metal Physics 5 (1975) 2249.Google Scholar
  4. [4]
    B.S. Majumdar and S.J. Burns,Acta Metallurgica 29 (1981) 579.Google Scholar
  5. [5]
    C. Atkinson and D.L. Clements,Acta Metallurgica 21 (1973) 55.Google Scholar
  6. [6]
    J.P. Hirth and R.H. WagonergInternational Journal of Solids and Structures 12 (1976) 117.Google Scholar
  7. [7]
    V. Vitek and J.P. Hirth,Scripta Metallurgica 11 (1977) 339.Google Scholar
  8. [8]
    E. Smith,Proceedings of the Royal Society, A 305 (1968) 387.Google Scholar
  9. [9]
    E. Smith,Acta Metallurgica 14 (1966) 556.Google Scholar
  10. [10]
    A.A. Griffith,Philosophical Transactions of the Royal Society, A 221 (1920) 163.Google Scholar
  11. [11]
    J.R. Rice and R. Thomson,Philosophical Magazine 29 (1974) 73.Google Scholar
  12. [12]
    B.A. Bilby, A.H. Cottrell and K.H. Swinden,Proceedings of the Royal Society, A 272 (1963) 304.Google Scholar
  13. [13]
    S.M. Ohr and S. Kobayashi,Journal of Metals 32 (1980) 35.Google Scholar
  14. [14]
    S.M. Ohr and J. Narayan,Philosophical Magazine A 41 (1980) 81.Google Scholar
  15. [15]
    S. Kobayashi and S.M. Ohr, in37th Annual Proceedings Electron Microscopy Society of America, ed. G.W. Bailey, San Antonio (1979) 424.Google Scholar
  16. [16]
    J. Narayan and S.M. Ohr, inNinth International Congress on Electron Microscopy 1, Toronto (1978) 580.Google Scholar
  17. [17]
    B.S. Majumdar and S.J. Burns,Scripta Metallurgica 14 (1980) 653.Google Scholar
  18. [18]
    N.I. Muskhelishvili,Singular Integral Equations, Noordhoff, Groningen (1953).Google Scholar
  19. [19]
    P.F. Byrd and M.D. Friedman,Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York (1971).Google Scholar
  20. [20]
    B.J. Hockey and B.R. Lawn,Journal of Materials Science 10 (1975) 1275.Google Scholar
  21. [21]
    B.R. Lawn, B.J. Hockey and S.M. Wiederhorn,Journal of Materials Science 15 (1980) 1207.Google Scholar
  22. [22]
    S.J. Burns and W.W. Webb,Journal of Applied Physics 41 (1970) 2086.Google Scholar
  23. [23]
    P.W. Early and S.J. Burns,International Journal of Fracture 16 (1980) 397–410.Google Scholar
  24. [24]
    J.F. Knott,Fundamentals of Fracture Mechanics, Butterworths, London (1973).Google Scholar
  25. [25]
    A.J. Birkle, R.P. Wei and G.E. Pellissier,Transactions of the American Society for Metals 59 (1966) 981.Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1983

Authors and Affiliations

  • B. S. Majumdar
    • 1
  • S. J. Burns
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of RochesterRochesterUSA

Personalised recommendations