Advertisement

Molecular mechanical analysis of the structure of strained organic molecules Communication 5. Trans-bicyclo[n.1.0.]alkanes and their derivatives

  • V. A. Svyatkin
  • A. I. Ioffe
  • O. M. Nefedov
Physical Chemistry
  • 23 Downloads

Conclusions

  1. 1.

    According to the molecular mechanical method, MM/2, the trans isomers of bicyclo [4.1.0]heptane and bicyclo[3.1.0]hexane are destabilized by 10–30 kcal/mole relative to the respective cis bicycles, whereas bicyclo[2.1.0]pentane lacks the minimum corresponding to the trans isomer.

     
  2. 2.

    Both the MM/2 method and quantum chemical calculations disclose the possibility of existence of the trans isomer of bicyclo[1.1.0]butane with an HC1C3H dihedral angle of 180°, and of a still more strained structure with an inverted configuration of the two bridge C atoms.

     
  3. 3.

    The relation between trans-bicyclo[1.1.0]butane derivatives and a pyramid structure has been analyzed, and possible routes to the fixing of the trans-bicyclo[1.1.0]butane skeleton in a polycyclic structural framework have been proposed.

     

Keywords

Alkane Pyramid Pentane Butane Quantum Chemical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. I. Ioffe, V. A. Svyatkin, and O. M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., 801 (1987).Google Scholar
  2. 2.
    A. Greenberg and J. F. Liebman, Strained Organic Molecules, Academic Press, New York (1978).Google Scholar
  3. 3.
    A. I. Ioffe, V. A. Svyatkin, and O. M. Nefedov, Structure of Cyclopropane Derivatives [in Russian], Nauka, Moscow (1986).Google Scholar
  4. 4.
    K. B. Wiberg, E. C. Lupton, D. J. Wasserman, et al., J. Am. Chem. Soc.,106, 1740 (1984).Google Scholar
  5. 5.
    D. Korn and T. Korn, Mathematics for Engineers and Scientists [in Russian], Nauka, Moscow (1985).Google Scholar
  6. 6.
    H. Fisher and H. Kollmar, Theor. Chim. Acta,18, 163 (1970).Google Scholar
  7. 7.
    A. I. Ioffe, V. A. Svyatkin, and O. M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., 1060 (1985).Google Scholar
  8. 8.
    A. I. Ioffe, V. A. Svyatkin, and O. M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., 587 (1986).Google Scholar
  9. 9.
    V. A. Svyatkin, A. I. Ioffe, and O. M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., 121, 1578 (1985).Google Scholar
  10. 10.
    K. B. Wiberg and J. J. Wendoloski, J. Am. Chem. Soc.,104, 5679 (1982).Google Scholar
  11. 11.
    S. P. Zil'berg, A. I. Ioffe, and O. M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., 255 (1983).Google Scholar
  12. 12.
    V. I. Minkin, R. M. Minyaev, I. I. Zakharov, and V. I. Avdeev, Zh. Org. Khim.,14, 3 (1978).Google Scholar
  13. 13.
    V. I. Minkin and R. M. Minyaev, Zh. Org. Khim.,15, 225 (1979).Google Scholar
  14. 14.
    R. M. Minyaev, V. I. Minkin, N. S. Zefirov, et al., Zh. Org. Khim.,17, 3 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • V. A. Svyatkin
    • 1
  • A. I. Ioffe
    • 1
  • O. M. Nefedov
    • 1
  1. 1.N. D. Zalinskii Institute of Organic ChemistryAcademy of Sciences of the USSRMoscow

Personalised recommendations