Skip to main content

Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism

Abstract

Markov kinetic models were used to synthesize a complete description of synaptic transmission, including opening of voltage-dependent channels in the presynaptic terminal, release of neurotransmitter, gating of postsynaptic receptors, and activation of second-messenger systems. These kinetic schemes provide a more general framework for modeling ion channels than the Hodgkin-Huxley formalism, supporting a continuous spectrum of descriptions ranging from the very simple and computationally efficient to the highly complex and biophysically precise. Examples are given of simple kinetic schemes based on fits to experimental data that capture the essential properties of voltage-gated, synaptic and neuromodulatory currents. The Markov formalism allows the dynamics of ionic currents to be considered naturally in the larger context of biochemical signal transduction. This framework can facilitate the integration of a wide range of experimental data and promote consistent theoretical analysis of neural mechanisms from molecular interactions to network computations.

This is a preview of subscription content, access via your institution.

References

  1. Aldrich RW, Corey DP and Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature306: 436–441.

    PubMed  Google Scholar 

  2. Aldrich RW and Stevens CF (1983) Inactivation of open and closed sodium channels determined separately. Cold Spring Harbor Symp. Quant. Biol.48: 147–153.

    PubMed  Google Scholar 

  3. Aldrich RW and Stevens CF (1987) Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells. J. Neurosci.7: 418–431.

    PubMed  Google Scholar 

  4. Ambros-Ingerson J and Lynch G (1993) Channel gating kinetics and synaptic efficacy: a hypothesis for expression of long-term potentiation. Proc. Natl. Acad. Sci. USA90: 7903–7909.

    PubMed  Google Scholar 

  5. Andersen O and Koeppe RE II (1992) Molecular determinants of channel function. Physiol. Rev.72: S89-S158.

    PubMed  Google Scholar 

  6. Andrade R, Malenka RC and Nicoll RA (1986) A G protein couples serotonin and GABA b receptors to the same channels in hippocampus. Science (Wash.)234: 1261–1265.

    Google Scholar 

  7. Armstrong CM (1969) Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J. Gen. Physiol.54: 553–575.

    PubMed  Google Scholar 

  8. Armstrong CM (1981) Sodium channels and gating currents. Physiol. Rev.62: 644–683.

    Google Scholar 

  9. Armstrong CM (1992) Voltage-dependent ion channels and their gating. Phyiol. Rev.72: S5-S13.

    Google Scholar 

  10. Augustine GJ and Charlton MP (1986) Calcium dependence of presynaptic calcium current and post-synaptic response at the squid giant synapse. J. Physiol. (London)381:619–640.

    Google Scholar 

  11. Ball FG and Sansom MS (1989) Ion-channel gating mechanisms: model identification and parameter estimation from single channel recordings. Proc. Roy. Soc. Lond. Ser. B236: 385–416.

    Google Scholar 

  12. Bartol TM Jr, Land BR, Salpeter EE and Salpeter MM (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys. J.59: 1290–1307.

    PubMed  Google Scholar 

  13. Bell AJ (1992) Self-organisation in real neurons: anti-Hebb in ‘channel space’? In: Moody JE, Hanson SJ and Lippmann RP, eds. Advances in Neural Information Processing Systems4, Morgan-Kaufmann, San Mateo, CA. pp. 59–66.

    Google Scholar 

  14. Bezanilla F (1985) Gating of sodium and potassium channels. J. Membr. Biol.88: 97–111.

    PubMed  Google Scholar 

  15. Birnbaumer L (1992) Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell71: 1069–1072.

    PubMed  Google Scholar 

  16. Blaustein MP (1988) Calcium transport and buffering in neurons. Trends Neurosci.11: 438–443.

    PubMed  Google Scholar 

  17. Borg-Graham LJ (1991) Modeling the nonlinear conductances of excitable membranes. In: Wheal H and Chad J, eds. Cellular and Molecular Neurobiology: A Practical Approach. Oxford University Press, New York. pp. 247–275.

    Google Scholar 

  18. Breitwieser GE and Szabo G (1988) Mechanism of muscarinic receptor-inducedK + channel activation as revealed by hydrolysis-resistant GTP analogues. J. Gen. Physiol.91: 469–493.

    PubMed  Google Scholar 

  19. Bush P and Sejnowski TJ (1991) Simulations of a reconstructed cerebellar Purkinje cell based on simplified channel kinetics. Neural Computation3: 321–332.

    Google Scholar 

  20. Brown DA (1990) G-proteins and potassium currents in neurons. Annu. Rev. Physiol.52: 215–242.

    PubMed  Google Scholar 

  21. Brown AM and Birnbaumer L (1990) Ionic channels and their regulation by G protein subunits. Annu. Rev. Physiol.52: 197–213.

    PubMed  Google Scholar 

  22. Catterall WA (1992) Cellular and molecular biology of voltagegated sodium channels. Physiol. Rev.72: S15–48.

    PubMed  Google Scholar 

  23. Chabala LD (1984) The kinetics of recovery and development of potassium channel inactivation in perfused squid giant axons. J. Physiol. (Lond.)356: 193–220.

    Google Scholar 

  24. Chanson M, Chandross KJ, Rook MB, Kessler JA, Spray DC (1993) Gating characteristics of a steeply voltage-dependent gap junctional channel in rat Schwann cells. J. Gen. Physiol.102: 925–946.

    PubMed  Google Scholar 

  25. Chen C and Hess P (1990) Mechanisms of gating of T-type calcium channels. J. Gen. Physiol.96: 603–630.

    PubMed  Google Scholar 

  26. Clapham, DE and Neer EJ (1993) New roles for G-protein βγ-dimers in transmembrane signalling. Nature365: 403–406.

    PubMed  Google Scholar 

  27. Clay JR (1989) Slow inactivation and reactivation of the potassium channel in squid axons. Biophys. J.55: 407–414.

    PubMed  Google Scholar 

  28. Clay JR and DeFelice LJ (1983) Relationship between membrane excitability and single channel open-close kinetics. Biophys. J.42: 151–157.

    PubMed  Google Scholar 

  29. Clements JD, Lester RAJ, Tong J, Jahr C, and Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science (Wash.)258: 1498–1501.

    Google Scholar 

  30. Clements JD and Westbrook GL (1991) Activation kinetics reveal the number of glutamate and glycine binding sites on the NMDA receptor. Neuron7: 605–613.

    PubMed  Google Scholar 

  31. Colquhoun D and Hawkes AG (1977) Relaxation and fluctuations of membrane currents that flow through drug-operated channels. Proc. Roy. Soc. Lond. Ser. B199: 231–262.

    Google Scholar 

  32. Colquhoun D and Hawkes AG (1981) On the stochastic properties of single ion channels. Proc. Roy. Soc. Lond. Ser. B211: 205–235.

    Google Scholar 

  33. Colquhoun D, Jonas P and Sakmann B (1992) Action of brief pulses of glutamate onAMPA/kainate receptors in patches from different neurons of rat hippocampal slices. J. Physiol. (London)458, 261–287.

    Google Scholar 

  34. Destexhe A, Babloyantz A and Sejnowski TJ (1993a) Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys. J.65: 1538–1552.

    PubMed  Google Scholar 

  35. Destexhe A, Contreras C, Sejnowski TJ and Steriade M (1994a) A model of spindle rhythmicity in the isolated reticular thalamus. J. Neurophysiol.,72:803–818.

    PubMed  Google Scholar 

  36. Destexhe A, Mainen Z and Sejnowski TJ (1994b) An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation6: 14–18.

    Google Scholar 

  37. Destexhe A, McCormick DA and Sejnowski TJ (1993b) A model of 8–10Hz spindling in interconnected thalamic relay and reticularis neurons. Biophys. J.65: 2474–2478.

    Google Scholar 

  38. DiFrancesco D and Matteo M (1994) Modulation of single hyperpolarization-activated channels (i f ) by cAMP in the rabbit sino-atrial node. J. Physiol. (London)474: 473–482.

    Google Scholar 

  39. Edwards FA, Konnerth A and Sakmann B (1990) Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J. Physiol. (London)430: 213–249.

    Google Scholar 

  40. Fidzhugh R (1961) Impulses and physiological states in models of nerve membrane. Biophys. J.1: 445–466.

    Google Scholar 

  41. Fitzhugh R (1965) A kinetic model of the conductance changes in nerve membrane. J. Cell. Comp. Physiol.66: 111–118.

    Google Scholar 

  42. Goldman L and Hahin R (1979) Sodium conductance kinetics. Solution of the general, linear three-state model. Cell Biophys.1: 345–354.

    Google Scholar 

  43. Hagiwara N and Irisawa H (1989) Modulation by intracellularCa 2+ of the hyperpolarization-activated inward current in rabbit single sino-atrial node cells. J. Physiol. (London)409: 121–141.

    Google Scholar 

  44. Harris AL, Spray DC and Bennett MVL (1981) Kinetic properties of a voltage-dependent junctional conductance. J. Gen. Physiol.77: 95–117.

    PubMed  Google Scholar 

  45. Hess SD, Doroshenko PA and Augustine GJ (1993) A functional role for GTP-binding proteins in synaptic vesicle cycling. Science (Wash.)259: 1169–1172.

    Google Scholar 

  46. Hessler NA, Shirke AM and Malinow R (1993) The probability of transmitter release at a mammalian central synapse. Nature366: 569–572.

    PubMed  Google Scholar 

  47. Hestrin S (1992) Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex. Neuron9: 991–999.

    PubMed  Google Scholar 

  48. Hille B (1992) Ionic Channels of Excitable Membranes. Sinauer Associates INC, Sunderland, MA.

    Google Scholar 

  49. Hindmarsh JL and Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature296: 162–164.

    PubMed  Google Scholar 

  50. Hines M (1989) A program for simulation of nerve equations with branching geometries. Int. J. Biomed. Comput.24: 55–68.

    PubMed  Google Scholar 

  51. Hines M (1993) NEURON-A program for simulation of nerve equations. In: Eeckman, FH, ed. Neural Systems: Analysis and Modeling Kluwer Academic Publishers, Boston, MA. pp. 127–136.

    Google Scholar 

  52. Hodgkin AL and Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London)117: 500–544.

    Google Scholar 

  53. Holmes WR and Levy WB (1990) Insights into associative long-term potentiation from computational models of NMDA receptor-mediate calcium influx and intracellular calcium concentration changes. J. Neurophysiol.63: 1148–1168.

    PubMed  Google Scholar 

  54. Horn R and Lange K (1983) Estimating kinetic constants from single channel data. Biophys. J.43: 207–223.

    PubMed  Google Scholar 

  55. Horn RJ, Patlak J and Stevens CF (1981) Sodium channels need not open before they inactivate. Nature291: 426–427.

    PubMed  Google Scholar 

  56. Horn R and Vandenberg CA (1984) Statistical properties of single sodium channels. J. Gen. Physiol.84: 505–535.

    PubMed  Google Scholar 

  57. Innis RB and Aghajanian GK (1987) Pertussis toxin blocks autoreceptor-mediated inhibition of dopaminergic neurons in rat substantia nigra. Brain Res.411: 139–143.

    PubMed  Google Scholar 

  58. Inoue M, Nakajima S and Nakajima Y (1988) Somatostatin induces an inward rectification in rat locus coeruleus neurones through a pertussis toxin-sensitive mechanism. J. Physiol. (London)407: 177–198.

    Google Scholar 

  59. Jahr CE and Stevens CF (1990a) A quantitative description of NMDA receptor-channel kinetic behavior. J. Neurosci.10: 1830–1837.

    PubMed  Google Scholar 

  60. Jahr CE and Stevens CF (1990b) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J. Neurosci.10:3178–3182.

    PubMed  Google Scholar 

  61. Jan LY and Jan YN (1992) Structural elements involved in specificK + channel functions. Annu. Rev. Physiol.54: 537–555.

    PubMed  Google Scholar 

  62. Johnson FH, Eyring H and Stover BJ (1974) The theory of rate processes in biology and medicine, New York: John Wiley and Sons.

    Google Scholar 

  63. Katz B (1966) Nerve, Muscle and Synapse. New York: McGraw Hill Book Co.

    Google Scholar 

  64. Keller BU, Hartshorne RP, Talvenheimo JA, Catterall WA and Montal M (1986) Sodium channels in planar lipid bilayers. Channel gating kinetics of purified sodium channels modified by batrachotoxin. J. Gen. Physiol.88:1–23.

    PubMed  Google Scholar 

  65. Kepler TB, Abbott LF and Marder E (1992) Reduction of conductance-based neuron models. Biol. Cybernetics66: 381–387.

    Google Scholar 

  66. Kienker P (1989) Equivalence of aggregated Markov models of ion-channel gating. Proc. Roy. Soc. Lond. Ser. B236: 269–309.

    Google Scholar 

  67. Koch C and Segev I (Editors) (1989) Methods in Neuronal Modeling. Cambridge, MA: MIT Press.

    Google Scholar 

  68. Kohn MC (1989) Computer modeling at the National Biomedical Simulation Resource. Computers and Mathematics with Applications18: 919–924.

    Google Scholar 

  69. Krinskii VI and Kokoz YM (1973) Analysis of the equations of excitable membranes — 1. Reduction of the Hodgkin-Huxley equations to a second-order system. Biofizika18: 506–511.

    PubMed  Google Scholar 

  70. Labarca P, Coronado R and Miller C (1980) Thermodynamic and kinetic studies of the gating behavior of a K+-selective channel from the sarcoplasmic reticulum membrane. J. Gen. Physiol.76: 397–24.

    PubMed  Google Scholar 

  71. Labarca P, Rice JA, Fredkin DR and Montal M (1985) Kinetic analysis of channel gating. Application to the cholinergic receptor channel and the chloride channel from Torpedo Californica. Biophys. J.47: 469–478.

    PubMed  Google Scholar 

  72. Lamb TD and Pugh EN (1992) A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J. Physiol. (London)449: 719–758.

    Google Scholar 

  73. LeMasson G, Marder E and Abbott LF (1993) Activity-dependent regulation of conductances in model neurons. Science (Wash.)259: 1915–1917.

    Google Scholar 

  74. Latorre R, Oberhauser A, Labarca P and Alvarez O (1989) Varieties of calcium-activated potassium channels. Annu. Rev. Physiol.51: 385–99.

    PubMed  Google Scholar 

  75. Lester RA and Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J. Neurosci.12: 635–643.

    PubMed  Google Scholar 

  76. Levitt DG (1989) Continuum model of voltage-dependent gating. Biophys. J.55: 489–498.

    PubMed  Google Scholar 

  77. Liebovitch LS and Sullivan JM (1987) Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophys. J.52: 979–988.

    PubMed  Google Scholar 

  78. Lisman JE (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl. Acad. Sci. USA86: 9574.

    PubMed  Google Scholar 

  79. Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: a new insight into CNS function. Science (Wash.)242: 1654–1664.

    Google Scholar 

  80. Llinás RR, Steinberg IZ and Walton K (1981) Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys. J.33: 323–351.

    PubMed  Google Scholar 

  81. Lopez HS (1992) Kinetics of G protein-mediated modulation of the potassium M-current in bullfrog sympathetic neurons. Neuron8: 725–736.

    PubMed  Google Scholar 

  82. Lopez HS and Brown AM (1992) Neuromodulation. Curr. Opin. Neurobiol.2: 317–322.

    PubMed  Google Scholar 

  83. Lytton WW and Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J. Neurophysiol.66: 1059–1079.

    PubMed  Google Scholar 

  84. MacDonald RL and Twyman RE (1992) Kinetic properties and regulation of GABA a receptor channels. Ion Channels3: 315–343.

    PubMed  Google Scholar 

  85. Magleby KL and Stevens CF (1972) A quantitative description of end-plate currents. J. Physiol. (London)223: 173–197.

    Google Scholar 

  86. Marom, S and Abbott LF (1994) Modeling state-dependent inactivation of membrane currents. Biophys. J.67:515–520.

    PubMed  Google Scholar 

  87. Mayer ML, Westbrook GL and Guthrie PB (1984) Voltage-dependent block byMg 2+ of NMDA responses in spine cord neurones. Nature309: 261–263.

    PubMed  Google Scholar 

  88. McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progr. Neurobiol.39: 337–388.

    PubMed  Google Scholar 

  89. McCormick DA and Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol.68: 1384–1400.

    PubMed  Google Scholar 

  90. McCormick DA and Williamson A (1991) Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal. J. Neurosci.11: 3188–3199.

    PubMed  Google Scholar 

  91. McManus OB, Weiss DS, Spivak CE, Blatz AL and Magleby KL (1988) Fractal models are inadequate for the kinetics of four different ion channels Biophys. J.54: 859–870.

    PubMed  Google Scholar 

  92. Migliore M and Ayala GF (1993) A kinetic model of short- and long-term potentiation. Neural Computation5: 636–647.

    Google Scholar 

  93. Mihara S and Nishi S (1989) Muscarinic excitation and inhibition of neurons in the submucous plexus of the guinea-pig caecum. Neurosci.31: 247–257.

    Google Scholar 

  94. Millhauser GL, Saltpeter EE and Oswald RE (1988) Diffusion models of ion-channel gating and the origin of power-law distributions from single-channel recording. Proc. Natl. Acad. Sci. USA85: 1503–1507.

    PubMed  Google Scholar 

  95. Monod J, Changeux JP and Jacob F (1963) Allosteric proteins and cellular control systems. J. Mol. Biol.6: 306–329.

    PubMed  Google Scholar 

  96. Neer EJ and Clapham DE (1988) Roles of G protein subunits in transmembrane signalling. Nature333: 129–134.

    PubMed  Google Scholar 

  97. Neher E (1992) Ion channels for communication between and within cells. Science (Wash.)256: 498–502.

    Google Scholar 

  98. Neher E and Sakmann B (1976) Single-channel currents recorded from membrane of denervated muscle frog fibers. Nature260: 799–802.

    PubMed  Google Scholar 

  99. Neher E and Stevens CF (1979) Voltage-driven conformational changes in intrinsic membrane proteins. In: FO Schmitt and FG Worden, eds. The neurosciences. Fourth study program, MIT Press, Cambridge, MA, pp. 623–629.

    Google Scholar 

  100. Nicoll RA (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science (Wash.)241: 545–551.

    Google Scholar 

  101. North RA (1989) Drug receptors and the inhibition of nerve cells. Brit. J. Pharmacol.98: 13–28.

    Google Scholar 

  102. North RA, Williams JT, Surprenant A and Christie, MJ (1987) Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc. Natl. Acad. Sci. USA84: 5487–5491.

    PubMed  Google Scholar 

  103. Nowak L, Bregestovski P, Ascher P, Herbet A and Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature307: 462–465.

    PubMed  Google Scholar 

  104. Otis TS, Dekoninck Y and Mody I (1993) Characterization of synaptically elicited GABA b responses using patch-clamp recordings in rat hippocampal slices. J. Physiol. (London)463: 391–407.

    Google Scholar 

  105. Otis TS and Mody I (1992) Modulation of decay kinetics and frequency of GABA a receptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons. Neurosci.49: 13–32.

    Google Scholar 

  106. Partridge LD and Swandulla D (1988) Calcium-activated nonspecific cation channels. Trends Neurosci.11: 69–72.

    PubMed  Google Scholar 

  107. Perkel DH, Mulloney B and Budelli RW (1981) Quantitative methods for predicting neuronal behavior. Neurosci.6: 823–827.

    Google Scholar 

  108. Perozo E and Bezanilla F (1990) Phosphorylation affects voltage gating of the delayed rectifier K+ channel by electrostatic interactions. Neuron5: 685–690.

    PubMed  Google Scholar 

  109. Press WH, Flannery BP, Teukolsky SA and Vetterling WT (1986) Numerical Recipes. The Art of Scientific Computing. Cambridge University Press, Cambridge, MA.

    Google Scholar 

  110. Rall, W (1967) Distinguishing theoretical synaptic potentials computed for different some-dendritic distributions of synaptic inputs. J. Neurophysiol.30: 1138–1168.

    PubMed  Google Scholar 

  111. Raman IM and Trussell LO (1992) The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron9:173–186.

    PubMed  Google Scholar 

  112. Rinzel J (1985) Excitation dynamics: insights from simplified membrane models. Fed. Proc.44: 2944–2946.

    PubMed  Google Scholar 

  113. Rosenmund C, Clements JD and Westbrook GL (1993) Nonuniform probability of release at a hippocampal synapse. Science (Wash.)262: 754–757.

    Google Scholar 

  114. Ross, EM (1989) Signal sorting and amplification through G protein-coupled receptors. Neuron3: 141–152.

    PubMed  Google Scholar 

  115. Sakmann B (1992) Elementary steps in synaptic transmission revealed by currents through single ion channels. Science (Wash.)256: 503–512.

    Google Scholar 

  116. Sakmann B and Neher E (Editors) (1983) Single-Channel Recording. Plenum Press, New York, NY.

    Google Scholar 

  117. Sansom MSP, Ball FG, Kerry CJ, Ramsey RL and Usherwood PNR (1989) Markov, fractal, diffusion, and related models of ion channel gating. A comparison with experimental data from two ion channels. Biophys. J.56: 1229–1243.

    PubMed  Google Scholar 

  118. Sasaki K and Sato M (1987) A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors. Nature325: 259–262.

    PubMed  Google Scholar 

  119. Sigworth FJ and Neher E (1980) Single Na channel currents observed in cultured rat muscle cells. Nature287: 447–449.

    PubMed  Google Scholar 

  120. Silver RA, Traynelis SF and Cull-Candy SG (1992) Rapid time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature355: 163–166.

    PubMed  Google Scholar 

  121. Skene JHP (1990) GAP-43 as a “calmodulin sponge” and some implications for calcium signalling in axon terminals. Neurosci. Res.13:S112-S125.

    Google Scholar 

  122. Srinivasan R and Chiel HJ (1993) Fast calculation of synaptic conductances. Neural Computation5, 200–204.

    Google Scholar 

  123. Stevens CF (1978) Interactions between intrinsic membrane protein and electric field. Biophys. J.22: 295–306.

    PubMed  Google Scholar 

  124. Standley C, Ramsey RL and Usherwood PNR (1993) Gating kinetics of the quisqualate-sensitive glutamate receptor of locust muscle studied using agonist concentration jumps and computer simulations. Biophys. J.65: 1379–1386.

    PubMed  Google Scholar 

  125. Staubli U, Ambros-Ingerson J, Lynch G (1992) Receptor changes and LTP: an analysis using aniracetam, a drug that reversibly modifies glutamate (AMPA) receptors. Hippocampus2: 49–58.

    PubMed  Google Scholar 

  126. Steriade M and McCarley RW (1990) Brainstem Control of Wake-fulness and Sleep. Plenum Press, New York, NY.

    Google Scholar 

  127. Steriade M, McCormick DA and Sejnowski TJ (1993) Thalamo-cortical oscillations in the sleeping and aroused brain. Science (Wash.)262: 679–685.

    Google Scholar 

  128. Strassberg AF and DeFelice LJ (1993) Limitations of the Hodgkin-Huxley formalism: effects of single channel kinetics on transmembrane voltage dynamics. Neural Computation5: 843–855.

    Google Scholar 

  129. Surprenant A and North RA (1988) Mechanism of synaptic inhibition by noradrenaline acting at alpha 2-adrenoreceptors. Proc. Roy. Soc. Lond. Ser. B234: 85–114.

    Google Scholar 

  130. Szabo G and Otero AS (1989) Muscarinic activation of potassium channels in cardiac myocytes: kinetic aspects of G protein, function in vivo. Trends Pharmacol. Sci. Dec. 1989 Suppl.: 46–49.

  131. Thalmann RH (1988) Evidence that guanosine triphosphate (GTP)-binding proteins control a synaptic response in brain: effect of pertussis toxin and GTP gamma S on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J. Neurosci.8: 4589–4602.

    PubMed  Google Scholar 

  132. Toro L and Stefani E (1991) Calcium-activated K+ channels: metabolic regulation J. Bioenergetics and Biomembranes23: 561–76.

    Google Scholar 

  133. Traynelis SF, Silver RA and Cull-Candy SG (1993) Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron11: 279–289.

    PubMed  Google Scholar 

  134. Trussell LO and Jackson MB (1987) Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. J. Neurosci.7: 3306–3316.

    PubMed  Google Scholar 

  135. Unwin N (1989) The structure of ion channels in membranes of excitable cells. Neuron3: 665–676.

    PubMed  Google Scholar 

  136. Vandenberg CA and Bezanilla F (1991) A model of sodium channel gating based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophys. J.60: 1511–1533.

    PubMed  Google Scholar 

  137. VanDongen AMJ, Codina J, Olate J, Mattera R, Joho R, Birnbaumer L and Brown AM (1988) Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science (Wash.)242: 1433–1437.

    Google Scholar 

  138. Walaas SI and Greengard P (1991) Protein phosphorylation and neuronal function. Pharmacol. Rev.43: 299–349.

    PubMed  Google Scholar 

  139. Wang XJ and Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation4: 84–97.

    Google Scholar 

  140. Wathey JC, Nass MM and Lester HA (1979) Numerical reconstruction of the quantal event at nicotinic synapses. Biophys. J.27: 145–164.

    PubMed  Google Scholar 

  141. Williams JT, Colmers WF and Pan ZZ (1988) Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. J. Neurosci.8: 3499–3506.

    PubMed  Google Scholar 

  142. Xiang Z, Greenwood AC and Brown T (1992) Measurement and analysis of hippocampal mossy-fiber synapses (abstract). Soc. Neurosci. Abstracts18: 1350.

    Google Scholar 

  143. Yamada WN, Koch C and Adams PR (1989) Multiple channels and calcium dynamics. In C Koch and I Segev, eds., Methods in Neuronal Modeling. Cambridge, MA: MIT Press, pp. 97–134.

    Google Scholar 

  144. Yamada WM and Zucker RS (1992) Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophys. J.61: 671–682.

    PubMed  Google Scholar 

  145. Zador A, Koch C and Brown TH (1990) Biophysical model of a Hebbian synapse. Proc. Natl. Acad. Sci. USA87: 6718–6722.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alain Destexhe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Destexhe, A., Mainen, Z.F. & Sejnowski, T.J. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1, 195–230 (1994). https://doi.org/10.1007/BF00961734

Download citation

Keywords

  • Synaptic Transmission
  • Ionic Current
  • Continuous Spectrum
  • Neural Mechanism
  • Essential Property