Electrochemical reduction of prostanoid syntone 7α-hydroxy-6Β-3′-oxo-4′-(m-chlorophenoxy)-1′e-butenyl-cis-2-oxabicyclo[3.3.0]octan-3-one

  • V. A. Chernova
  • Yu. I. Murinov
  • N. S. Vostrikov
  • O. M. Kuznetsov
  • M. S. Miftakhov
Physical Chemistry


The reactivity of the prostanoid syntone 7α-hydroxy-6Β-3′-oxo-4′-(m-chlorophenoxy)-1′E-butenyl-cis-2-oxabicyclo[3.3.0]octan-3-one is determined by the presence of an enone fragment in the molecule. The electrochemical reduction of this enone in DMF proceeds in two stages. In the first stage the single-electron reduction is accompanied by the dimerization of the originally formed anion radicals. The further reduction of the anion radical is also complicated by the subsequent reactions. The four-stage reduction of the investigated enone in 50% aqueous ethanol reflects the influence of the protogenic medium on its electrochemical behavior. The formation of a diketone at the first and of a saturated ketone at the second stage has been explained by the dimerization of the originally formed anion radical and its further reduction. At the potentials of the third and fourth stages the original diketone is reduced to the corresponding ketoalcohol, which catalyzes the discharge of hydrogen in the potential region of the fourth wave.


Hydrogen Ketone Anion Radical Electrochemical Behavior Potential Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. Wawzonek and A. Gundersen, J. Electrochem. Soc.,111, No. 3, 324 (1964).Google Scholar
  2. 2.
    J. Simonet, C. R.,263C, No. 25, 1546 (1966).Google Scholar
  3. 3.
    M. S. Miftakhov, N. S. Vostrikov, O. M. Kuznetsov, et al., Zh. Org. Khim.,23, No. 6, 1185 (1987).Google Scholar
  4. 4.
    S. G. Mairanovskii and F. S. Titov, Zh. Anal. Khim.,15, No. 1, 121 (1960).Google Scholar
  5. 5.
    J. Heyrovsky and J. Kuta, Principles of Polarography, Academic Press, New York (1966).Google Scholar
  6. 6.
    Yu. M. Kargin, V. Z. Kondranina, and N. I. Semakhina, Izv. Akad. Nauk SSSR, Ser. Khim., No. 2, 278 (1971).Google Scholar
  7. 7.
    Z. Machacek and J. Mencikova, Chem. Prumysl,13, No. 8, 433 (1963).Google Scholar
  8. 8.
    R. Pasternak, Helv. Chim. Acta,31, No. 3, 753 (1948).Google Scholar
  9. 9.
    J. P. Zimmer, J. A. Richards, J. C. Turner, and D. H. Evans, Anal. Chem.,43, No. 8, 1000 (1971).Google Scholar
  10. 10.
    E. Lamy, L. Nadjo, and J. M. Saveant, J. Electroanal Chem.,42, No. 2, 189 (1973).Google Scholar
  11. 11.
    C. Amatore, J. Pinson, and J. M. Saveant, J. Electroanal. Chem.,137, No. 1, 143 (1982).Google Scholar
  12. 12.
    M. M. Baizer and J. D. Anderson, J. Org. Chem.,30, No. 5, 1348 (1965).Google Scholar
  13. 13.
    B. L. Funt and F. D. Williams, J. Polym. Sci.,2, No. 2, 865 (1964).Google Scholar
  14. 14.
    E. Knobloch, Coll. Czech. Chem. Comm.,25, No. 12, 3330 (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • V. A. Chernova
    • 1
  • Yu. I. Murinov
    • 1
  • N. S. Vostrikov
    • 1
  • O. M. Kuznetsov
    • 1
  • M. S. Miftakhov
    • 1
  1. 1.Institute of Chemistry, Bashkir Scientific Center, Ural BranchAcademy of Sciences of the USSRUfa

Personalised recommendations