Electrochemical oxidation of 4H-imidazole N-oxides

  • I. G. Kursakina
  • V. F. Starichenko
  • I. A. Kirilyuk
  • I. A. Grigor'ev
  • L. B. Volodarskii
Physical Chemistry


Electrochemical oxidation of substituted 4H-imidazole N-oxides was studied by cyclic voltammetry and EPR spectroscopy. The oxidation potentials of these compounds depend on the chemical form of the substituents, and also on the number and the position of N-oxide oxygen atoms in the ring. During low-temperature electrochemical oxidation in CH2Cl2 the formation of cation radicals of 4H-imidazole N-oxides was established. It was shown that the oxidative methoxylation of 4H-imidazole N-oxides proceeds via a cation-radical mechanism.


Oxidation Oxygen Spectroscopy Oxygen Atom CH2Cl2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. C. R. Symons, Chem. Soc. Rev,13, No. 4, 393 (1984).Google Scholar
  2. 2.
    Z. V. Todres, Ion-Radicals in Organic Synthesis [in Russian], Vol. 2, Khimiya, Moscow (1986), p. 26.Google Scholar
  3. 3.
    O. Hammerich and V. D. Parker, Adv. Phys. Org. Chem.,20, 55 (1984).Google Scholar
  4. 4.
    K. Yoshida, Electrooxidation in Organic Chemistry. The Role of Cation Radicals as Synthetic Intermediates, Wiley-Interscience, New York (1983).Google Scholar
  5. 5.
    M. M. Baizer and Kh. M. Lunda (eds.), Organic Electrochemistry [in Russian], Vol. 2, Khimiya, Moscow (1988), p. 672.Google Scholar
  6. 6.
    K. Nishikida, T. Kubota, H. Miyazaki and Sh. Sakata, J. Magn. Reson.7, 260 (1972).Google Scholar
  7. 7.
    H. Miyazaki, Y. Matsukisa and T. Kubota, Bull. Chem. Soc. Jpn.,54, 3850 (1981).Google Scholar
  8. 8.
    B. M. Latta and R. W. Taft, J. Am. Chem. Soc.,89, No. 20, 5172 (1967).Google Scholar
  9. 9.
    A. J. Bard and H. Lund (eds.), Encyclopedia of Electrochemistry of the Elements. Organic Section, Vol. 15, Marcel Dekker, New York (1984) p. 30.Google Scholar
  10. 10.
    B. Gillon and Y. Ellinger, Mol. Phys.,63, No. 6, 967 (1988).Google Scholar
  11. 11.
    I. A. Grigor'ev, G. I. Shchukin, V. V. Khramtsov, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 10, 2342 (1985).Google Scholar
  12. 12.
    R. E. Sioda and W. S. Koski, J. Am. Chem. Soc.,87, No. 24, 5573 (1965).Google Scholar
  13. 13.
    A. Gordon and R. Ford, A. Chemist's Companion, Wiley-Interscience New York (1973).Google Scholar
  14. 14.
    I. A. Grigor'ev, I. A. Kirilyuk and L. B. Volodarskii, Khim. Geterosikl. Soedin., No. 12, 1640 (1988).Google Scholar
  15. 15.
    I. A. Grigor'ev, L. B. Volodarskii (Volodarsky), V. F. Starichenko, et al., Tetrahedron Lett,26, No. 41, 5085 (1985).Google Scholar
  16. 16.
    B. I. Plakhutin, Information Materials of the SFKP, Siberian Branch, Academy of Sciences of the USSR, published by IKhKiG (1989), p. 16.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • I. G. Kursakina
    • 1
  • V. F. Starichenko
    • 1
  • I. A. Kirilyuk
    • 1
  • I. A. Grigor'ev
    • 1
  • L. B. Volodarskii
    • 1
  1. 1.Novosibirsk Institute of Inorganic Chemistry, Siberian BranchAcademy of Sciences of the USSRNovosibirsk

Personalised recommendations