Skip to main content
Log in

Clockspring model of sprouting and blossoming

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The new “clockspring” mathematics of Chris Illert is shown to apply to plant geometries and, in particular, to the dynamics processes of sprouting and flowering. Indeed, Kawaguchi's already successful model of branching corals and trees is found to be a simple first order version of Illert's generalised second order “clockspring” mathematics. The paper does not address the difficult variational mathematics of Illert's optimization problem but, instead, by concentrating upon the descriptive aspect, it has been possible to provide an alternative first-principles derivation of Illert's integral equation using simpler discrete analysis of a kind which will make this area of modelling more accessible to the very applied scientists who will benefit most from its existence and use. These new examples of Illert's mathematics further demonstrate its breadth of application in Theoretical Morphology. And its success in so many areas — Conchology, Embryology and Botany — should be contrasted with the dwindling returns of conventional models based upon traditional elasticity theory and continuum mechanics.

Riassunto

L'articolo dimostra come la nuova matematica di Chris Illert “a molla d'orologio” possa essere applicata alla geometria delle piante e, in particolare ai processi dinamici del germogliare e sbocciare di piante e fiori. Il fortunato modello di Kawaguchi sulla crescita dei rami dei coralli e degli alberi è senz'altro una versione di primo grado della versione di secondo grado di Illert sulla matematica “a molla d'orologio”. L'articolo non analizza la difficile matematica variazionale del problema dell'ottimizzazoine: concentrandosi sull'aspetto descrittivo, è stato infatti possibile fornire un primo principio di derivazione dell'equazione integrale di Illert, usando un tipo di analisi discreta più semplice; questa renderà quest'area di modelli più accessibile a chi lavora nel campo delle scienze applicate, che avrà così modo di utilizzare tali teorie e trarne i relativi vantaggi. Questi nuovi esempi della matematica di Illert dimostrano ulteriormente il suo vasto campo di applicazione nella morfologia teorica, ed il suo successo in tante aree — Conchiliologia, Embriologia, e Botanica — contrasta notevolmente con la scarsa utilità dei modelli convenzionali basati sulla teoria tradizionale dell'elasticità e la meccanica continua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Edwards,The field of form. Floris Books, Edinburgh 1982.

    Google Scholar 

  2. R. Erickson and W. Silk,The kinematics of plant growth. Scientific American242 (5), 110, May 1980.

    Google Scholar 

  3. C. Illert,The mathematics of gnomonic seashells. Math. Biosci.63 (1), 21–56 (1983).

    Google Scholar 

  4. C. Illert,General theory of life energy. J. Inferential & Deductive Biology1 (2), (March/April 1985).

  5. C. Illert,Introduction to theoretical embryogenesis. In: Solved Problems in Bioelasticity, vol. 1, in press.

  6. Y. Kawaguchi,A morphological study of the form of nature. Computer Graphics16 (3): 223–232 (1982). See also “Kawaguchi's spirals”. Omni 5 (2): 110–115 (Nov. 1982) and J. Deken's book “Computer images, state of the art”, Thames & Hudson 1983.

    Google Scholar 

  7. J. Keller,Tendril shape & lichen growth, Lect. on Maths. in the Life Sci.13, 257–270 (1980).

    Google Scholar 

  8. E. McCoy & L. Boersma,The principles of continuum mechanics applied to transport processes and deformation in plant tissue. J. theor. Biol.111, 687–705 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reverberi, D. Clockspring model of sprouting and blossoming. Z. angew. Math. Phys. 36, 743–756 (1985). https://doi.org/10.1007/BF00960385

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00960385

Keywords

Navigation