, Volume 174, Issue 3, pp 349–357 | Cite as

Sugar nucleotides dissipate ATP-generated transmembrane pH gradient in Golgi vesicles from suspension-cell protoplasts ofChenopodium rubrum L.

  • Maria Gogarten-Boekels
  • Johann Peter Gogarten
  • Friedrich-Wilhelm Bentrup


A microsomal vesicle fraction (GV) markedly enriched by the Golgi marker enzyme latent inosine diphosphatase (IDPase) has been isolated from photoautotrophic suspension-cell protoplasts ofChenopodium rubrum L. Addition of ATP creates a substantial pH gradient across the GV membrane as measured by accumulation of acridine orange. The GV showed a density of 1.14 g·cm-3 by equilibrium density centrifugation on sucrose gradients. Coincidence of acridine-orange accumulation and IDPase activity was confirmed on Percoll gradients. Formation of the pH gradient half-saturates at 0.3 mM MgATP, peaks at pH 7, and is competitively inhibited by ADP (ki≤0.1 mM), but not by Pi; it is hardly inhibited by orthovanadate, quickly dissipated by monensink2=18 nM), nigericin (k1/2=25 nM), and sluggishly by N-ethylmaleimide (k1/2≈35 μM). Inhibition by KNO3 (k1/2≈6.7 mM) is incomplete (60%). Uridine 5′-diphosphate (UDP)-glucose, UDP-galactose, but not UDP-mannose and the pertinent sugars, dissipate the ATP-generated pH gradient (k1/2≈10–20 mM UDP-glucose; optimum pH at 7.8). This UDP-glucose activity is accompanied by release of Pi, but not of glucose or sucrose. UDP-glucoseinduced Pi release from the GV saturates (k1/2=1 mM UDP-glucose; optimum pH at 7) and is completely inhibited by the anion-channel blocker 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS;k1/2=140 μM). The GV incorporates UDP-[U-14C]glucose into an acid-labile, alkaline-stable macromolecular compound; this process is like-wise inhibited by DIDS. We propose a model including, inter alia, a UDP-glucose/uridine-5′-monophosphate translocator and a phosphate-permeable anion channel to operate in Golgi vesicles ofChenopodium rubrum.

Key words

Chenopodium Golgi vesicle Proton ATPase Protoplast Sugar nucleotide Suspension cell 



acridine orange


4,4′-diisothiocyano-2,2′-stilbene disulfonic acid


carbonyl cyanidep-trifluoromethyoxyphenyl hydrazone


Golgi-vesicle-enriched microsomal fraction


mosine diphosphatase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, M.S., Akazawa, T. (1985) Association of H+-translocating ATPase in the golgi membrane system from suspension-cultured cells of sycamore (Acer pseudoplatanus L.). Plant Physiol.81, 222–227Google Scholar
  2. Ali, M.S., Nishimura, M., Mitsui, T., Akazawa, T., Kojima, K. (1985) Isolation and characterization of Golgi membranes from suspension-cultured cells of sycamore (Acer pseudoplatanus L.). Plant Cell Physiol.26, 1119–1133Google Scholar
  3. Anderson, R.G.W., Pathak, R.K. (1985) Vesicles and cisternae in thetrans Golgi apparatus of human fibroblasts are acidic compartments. Cell40, 635–643Google Scholar
  4. Bentrup, F.-W., Gogarten-Boekels, M., Gogarten, J.P., Hoffmann, B., Baumann, Chr. (1985) A patch clamp study of tonoplast electrical properties in vacuoles isolated fromChenopodium rubrum suspension cells. Z. Naturforsch.40c, 886–890Google Scholar
  5. Bentrup, F.-W., Gogarten-Boekels, M., Gogarten, J.P., Hoffmann, B., Baumann, Chr. (1986) ATP-dependent acidification and tonoplast hyperpolarization in isolated vacuoles from green suspension cells ofChenopodium rubrum. L. Proc. Natl. Acad. Sci. USA83, 2431–2433Google Scholar
  6. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248–254Google Scholar
  7. Cabantchik, Z.I., Rothstein, A. (1974) Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J. Membr. Biol.15, 207–226Google Scholar
  8. Capasso, J.M., Hirschberg, C.B. (1984) Mechanisms of glycosylation and sulfatation in the Golgi apparatus: evidence for nucleotide sugar/nucleoside monophosphate and nucleotide sulfate/nucleoside monophosphate antiports in the golgi apparatus membrane. Proc. Natl. Acad. Sci. USA81, 7051–7055Google Scholar
  9. Chanson, A., McNaughton, E., Taiz, L. (1984) Evidence for a KCl-stimulated, Mg2+-ATPase on the Golgi of corn coleoptiles. Plant Physiol.76, 498–507Google Scholar
  10. Chanson, A., Taiz, L. (1985) Evidence for an ATP-dependent proton pump on the Golgi of corn coleoptiles. Plant Physiol.78, 232–240Google Scholar
  11. Chrispeels, M.J. (1983) The Golgi apparatus mediates the transport of phytohemagglutinin to the protein bodies in bean cotelydons. Planta158, 140–151Google Scholar
  12. Cooper, T.G. (1981) Biochemische Arbeitsmethoden. de Gruyter, Berlin New YorkGoogle Scholar
  13. Eibl, H., Lands, W.E.M. (1969) A new, sensitive determination of phosphate. Anal. Biochem.30, 51–57Google Scholar
  14. Felle, H., Bertl, A. (1986) The fabrication of H+-selective liquid-membrane microelectrodes for use in plant cells. J. Exp. Bot.182, 1416–1428Google Scholar
  15. Geisow, M.J., Burgoyne, R.D. (1982) Effect of monensin on chromaffin cells and the mechanism of organelle swelling. Cell Biol. Int. Reports6, 933–939Google Scholar
  16. Glickman, J., Croen, K., Kelly, S., Al-Awquati, Q. (1983) Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J. Cell Biol.97, 1303–1308Google Scholar
  17. Gogarten, J.P. (1986) Untersuchungen zum Zuckertransport an photoautotrophen Suspensionszellen vonChenopodium rubrum L. Ph.D. Dissertation, Justus-Liebig-Universität GiessenGoogle Scholar
  18. Gogarten, J.P., Bentrup, F.-W. (1984) Properties of a hexose carrier at the plasmalemma of green suspension cells fromChenopodium rubrum L. In: Membrane transport in plants, pp. 183–188, Cram, W.J., Janácek, K'., Rybová, R'., Sigler, K'., eds. Academia Publishing House, PrahaGoogle Scholar
  19. Gogarten-Boekels, M. (1987) Membranvesikel aus photoautotrophen Suspensionszellen vonChenopodium rubrum L.: Charakterisierung, Protonentransport und vektorieller Metabolismus. Ph.D. Dissertation, Justus-Liebig-Universität GiessenGoogle Scholar
  20. Gogarten-Boekels, M., Gogarten, J.P., Bentrup, F.-W. (1985) Kinetics and specificity of ATP-dependent proton translocation measured with acridine orange in microsomal fractions from green suspension cells ofChenopodium rubrum L. J. Plant Physiol.118, 309–325Google Scholar
  21. Green, J.R. (1983) The Golgi apparatus. In: Isolation of membranes and organelles from plant cells pp. 135–152, Hall, J.L., Moore, A.L., eds. Academic Press, London New York Paris San Francisco Sao Paulo Sydney TorontoGoogle Scholar
  22. Hodges, T.K., Leonard, R.T. (1974) Purification of a plasma membrane bound adenosine triphosphatase from plant roots. Methods Enzymol.32, 392–406Google Scholar
  23. Hüsemann, W., Barz, W. (1977) Photoautotrophic growth and photosynthesis in cell suspension cultures fromChenopodium rubrum. Physiol. Plant.40, 77–81Google Scholar
  24. Klingenberg, M. (1980) The ADP-ATP translocation in mitochondria, a membrane potential controlled transport. J Membr. Biol.56, 97–105Google Scholar
  25. Kuhn, N.J., White, A. (1976) Evidence for specific transport of uridine diphosphate galactose across Golgi membrane of rat mammary gland. Biochem. J.154, 243–244Google Scholar
  26. Lloyd, J.B., Forster, S. (1986) The lysosome membrane. Trends Biochem. Sci.11, 365–368Google Scholar
  27. Mellman, I., Fuchs, R., Helenius, A. (1986) Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem.55, 663–700Google Scholar
  28. Mollenhauer, H.H., Morré, D.J., Drolesky, R. (1983) Monensin affects the trans half ofEuglena dictyosomes. Protoplasma114, 119–124Google Scholar
  29. Nagahashi, J., Kane, A.P. (1982) Triton-stimulated nucleoside diphosphatase activity: subcellular localization in corn root homogenates. Protoplasma112, 167–173Google Scholar
  30. Passow, H., Fasold, H., Jennings, M.L., Lepke, S. (1982) The study of the anion transport protein (‘band 3 protein’) in the red cell membrane by means of tritiated 4,4′-diisothiocyano-dihydrostilbene-2,2-disulfonic acid (3H2DIDS). In: Chloride transport in biological membranes, pp. 1–31, Zadunaisky, J.A., ed., Academic Press, New York LondonGoogle Scholar
  31. Pennington, R.J. (1961) Biochemistry of dystrophic muscle: mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem. J.80, 649–654Google Scholar
  32. Perez, M., Hirschberg, C.B. (1986) Transport of sugar nucleotides and adenosine 3′ phosphate 5′ phosphosulfate into vesicles derived from the Golgi apparatus. Biochim. Biophys. Acta864, 213–222Google Scholar
  33. Quail, P.H. (1979) Plant cell fractionation. Annu. Rev. Plant Physiol.30, 425–484Google Scholar
  34. Ray, P.M. (1980) Cooperative action of β-glucan synthetase and UDP-xylose-xylosyl transferase of Golgi membranes in the synthesis of xyloglucan-like polysaccharide. Biochim. Biophys. Acta629, 431–444Google Scholar
  35. Ray, P.M., Shininger, T.L., Ray, M.M. (1969) Isolation of β-glucan synthase particles from plant cells and identification with Golgi membranes. Biochemistry64, 605–612Google Scholar
  36. Senger, H. (1970) Charakterisierung einer Synchronkultur vonScenedesmus obliquus, ihrer potentiellen Photosyntheseleistung und des Photosynthese-Quotienten während des Entwicklungszyklus. Planta90, 243–266Google Scholar
  37. Sze, H. (1985) H+-translocating ATPases: advances using membrane vesicles. Annu. Rev. Plant Physiol.36, 175–208Google Scholar
  38. Thom, M., Maretzki, A. (1985) Group translocation as a mechanism for sugar transfer into vacuoles from sugar cane cells. Proc. Natl. Acad. Sci. USA82, 4697–4701Google Scholar
  39. Thom, M., Leigh, R.A., Maretzki, A. (1986) Evidence for the involvement of a UDP-glucose-dependent group translocator in sucrose uptake into vacuoles of storage roots of red beet. Planta167, 410–413Google Scholar
  40. Wilkinson, G.N. (1961) Statistical estimations in enzyme kinetics. Biochem. J.80, 324–332Google Scholar
  41. Winter, K., Foster, J.G., Edwards, G.E., Holtum, J.A.M. (1982) Intracellular localization of enzymes of carbon metabolism inMesembryanthemum crystallinum exhibiting C3 photosynthesis characteristics or performing crassulacean acid metabolism. Plant Physiol.69, 300–307Google Scholar
  42. Zoccoli, M.A., Hoopes, R.R., Karnovsky, M.L. (1982) Identification of a rat liver microsomal polypeptide involved in the transport of glucose 6-phosphate; labeling with DIDS. J. Biol. Chem.257, 3919–3924Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Maria Gogarten-Boekels
    • 1
  • Johann Peter Gogarten
    • 1
  • Friedrich-Wilhelm Bentrup
    • 1
  1. 1.Botanisches Institut I der Justus-Liebig-UniversitätGiessenFederal Republic of Germany

Personalised recommendations