Transport in Porous Media

, Volume 3, Issue 6, pp 549–562 | Cite as

An adaptive domain decomposition method for simulation of transport in porous media

  • R. E. Hayes
  • P. A. Tanguy
Article

Abstract

A Galerkin finite element method is used along with a self-adaptive strategy of domain discretisation to model dispersion in an axisymmetric cylindrical porous medium. A solution strategy is proposed based on the use of a Gear scheme for the time stepping and partial vectorisation of the code. The domain is highly discretised in the area of the sharp transient front, while the remainder is coarsely discretised. The area covered by the fine mesh is determined by the value of the local concentration gradients. Numerical results are presented for the one and two dimensional cases.

Key words

Adaptive mesh finite element method dispersion 

Nomenclature

aL

Longitudinal dispersivity

aT

Transverse dispersivity

[A]

Global matrix

C

Concentration

D

Dispersion coefficient

Do

Diffusion coefficient

{F}

Solicitation vector

{G}

Solicitation vector

h

Finite element length

k

Constant

[K]

Global matrix of coefficients

[M]

Mass matrix

n

Outward pointing normal vector

P

Pressure

Pe

Peclet number

t

Time

v

Interstitial velocity

Greek Symbols

Γ

Boundary

ψ

Test function

Ω

Domain

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboulaich, R., Fortin, M., Robichaud, M., and Tanguy, P., 1986, Several iterative schemes for the solution of the Navier-Stokes equations,Proc. Sixth Intl. Symp. Finite Element Methods in Flow Problems, Antibes, France, June 16–20.Google Scholar
  2. Bäthe, K., 1982,Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey.Google Scholar
  3. Bank, R. E., 1987, Adaptive mesh refinement for parameter-dependent PDE, presented atICIAM'87, Paris, France, June 29–July 3, 1987.Google Scholar
  4. Bear, J., 1961, On the tensor form of dispersion in porous media,J. Geophys. Res. 66, 1185–1197.Google Scholar
  5. Finlayson, B. A. and Jensen, O. K., 1986, A numerical scheme for tracking sharp fronts in studies of tertiary oil-recovery pilots,SPE Res. Eng., March, 194–202.Google Scholar
  6. Fortin, A., Fortin, M., and Tanguy, P. A., 1986, Numerical simulation of viscous flows in hydaulic turbomachinery by the finite element method,Comp. Meth. Appl. Mech. Eng. 58, 337–358.Google Scholar
  7. Koch, D. L. and Brady, J. F., 1985, Dispersion in fixed beds,J. Fluid Mech. 154, 399–427.Google Scholar
  8. Löhner, R., 1987a, An adaptive finite element scheme for transient problems in CFD,Comp. Meth. Appl. Mech. Eng. 61, 323–338.Google Scholar
  9. Löhner, R., 1987b, Adaptive remeshing for transient problems,Proc. of the 8th Int. Conf. on Comp. Meth. Appl. Sci. Eng., Paris, pp. 665–671.Google Scholar
  10. Miller, K. and Miller, R. N., 1981, Moving finite elements. I,SIAM J. Numer. Anal. 18, 1019–1032.Google Scholar
  11. Miller, K., 1981, Moving finite elements. II,SIAM J. Numer. Anal. 18, 1033–1057.Google Scholar
  12. Patel, K. M., 1983, Microemulsion flooding and dispersion in porous media, PhD. Dissertation, University of Bath.Google Scholar
  13. Settari, A. and Price, H. S., 1977, Development and application of variational methods for simulation of miscible displacement in Porous Media,SPEJ, June, 228–246.Google Scholar
  14. Smith, R. M. and Hutton, A. G., 1982, The numerical treatment of advection: A performance comparison of current methods,Num. Heat Transfer 5, 439–461.Google Scholar
  15. Zienkiewicz, O. C., 1977,The Finite Element Method, 3rd Edn., McGraw-Hill, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • R. E. Hayes
    • 1
  • P. A. Tanguy
    • 2
  1. 1.Department of Chemical EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Département de génie chimiqueUniversité LavalQuébecCanada

Personalised recommendations