, Volume 41, Issue 1, pp 589–625 | Cite as

An analysis of white-mottled mutants inDrosophila hydei, with observations on X-Y exchanges in the male

  • F. M. A. van Breugel


Chromosomes and phenotypes of four different sex-linkedwhite-mottled mutants of the position-effect variogation type were studied. Three mutants (wm1,wm2,wm3) are X-chromosomal rearrangements which shift the w+ locus into a position close to heterochromatin, but which have different ouchromatic and heterochromatic breaks. The fourth, a spontaneous derivative ofwm1, is an insertional duplication of part of the X chromosome, including thew+ andN+loci. The duplicated segment is inserted into the distal part of the long arm of the heterochromatic Y chromosome. It is designated,wmCoY, orXwmCo when transferred to the X chromosome.

Three chromosomal types (wm1,wmCoY) and (XwmCo) having the same cuchromatic break near thew+ locus, cause large-spotted eyes whereas two others (wm2,wm3) produce a popper-and-salt type of mottling. From the position of the various eu- and heterochromatic breaks, it appears that the distance of thew+ locus to the point of reunion with heterochromatin, rather than the amount or type of adjoining heterochromatin, dietates the phenotypic action of the displacedw+ locus, in the sense of a spreading effect on two proposed functional subunits within thew+ locus.

The pigmentation background against which the mottling effect is produced, i.e., a givenw-allele with its characteristic colour, or other eye colour mutations, does not seem to affect the type of mottling. Drosopterins and ommochromes react in the same way to modifing factors like temperature and supernumerary Y chromosomes. Two mutants (wm2 andwmCoY) while reacting in the same manner to Y chromosomes showed an opposite temperature response.

By exchange between the heterochromatin of the Y and X chromosome inw/wmCoY males thewmCo duplication was transferred between the sex chromosomes with a certain regularity. It is not yet known wether the exchanges are mitotic or meiotic in origin but their heterochromatic nature has been demonstrated cytologically.


Distal Part Temperature Response Characteristic Colour Spreading Effect Colour Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atwood K. C. (1969). Some aspects of thebobbed problem inDrosophila.Genetics (Suppl.) 61: 319–327.Google Scholar
  2. Bahn, E. (in press). Translocations and position-effect variegation for isoamylases inD. melanogaster. (Drosophila Information Service).Google Scholar
  3. Baker W. K. (1963). Genetic control of pigment differentiation in somatic cells.Am. Zool. 3: 57–69.Google Scholar
  4. Baker W. K. (1967). A clonal system of differential gene activity inDrosophila.Develop. Biol. 16: 1–17.Google Scholar
  5. Baker W. K. (1968). Position-effect variegation.Adv. Genet. 14: 133–169.Google Scholar
  6. Becker H. J. (1957). Über Röntgenmosaikflecken und Defektmutationen am Auge vonDrosophila und die Entwicklungsphysiologie des Auges.Z. ind. Abst.-u. Vererbungslehre 88: 333–373.Google Scholar
  7. Becker H. J. (1960). Variegation in thezeste eye color alleles and its bearing on gene action during the development of the eye ofDrosophila melanogaster.Genetics 45: 519–534.Google Scholar
  8. Becker H. J. (1961). Untersuchungen zur Wirkung des Heterochromatins auf die Genmanifestierung beiDrosophila melanogaster.Verh. Deutsch. Zool. Ges. Bonn/Rhein 1960. Suppl. 24: 283–291.Google Scholar
  9. Becker H. J. (1966). Genetic and variegation mosaics in the eye ofDrosophila. In “Current topics in developmental biology”, eds. A. A. Moscona & A. Monroy, Vol.I, pp. 155–171. Academic Press, New York.Google Scholar
  10. Berendes H. D. (1963). The salivary gland chromosomes ofDrosophila hydei Sturtevant.Chromosoma (Berl.) 14: 195–206.Google Scholar
  11. Breugel, F. M. A. van, (in prep.) The action of theNotch-locus inDrosophila hydei. Genetica 42.Google Scholar
  12. Breugel F. M. A.van, A. Ray & H. J. Gloor (1968). A comparison of banding patterns in salivary gland chromosomes of two species ofDrosophila.Genetica 39: 165–192.Google Scholar
  13. Bridges C. B. (1916). Non-disjunction as proof of the chromosome theory of heredity.Genetics 1: 1–52, 107–163.Google Scholar
  14. Brosseau G. E., B. Nicoletti, E. H. Grell & D. L. Lindsley (1961). Production of altered Y chromosomes bearing specific sections of the X chromosome inDrosophila.Genetics 46: 339–346.Google Scholar
  15. Catcheside D. G. (1947). The P-locus position effect inOenothera.J. Genet. 48: 31–42.Google Scholar
  16. Cattanach B. M. (1961). A chemically-induced variegated-type position effect in the mouse.Z. Vererbungslehre 92: 165–182.Google Scholar
  17. Chen S. Y. (1948). Action de la température sur trois mutants à panachure deDrosophila melanogaster: w 258\s-18,w m5,et z. Bull. Biol. France et Belg. 82: 114–129.Google Scholar
  18. Clancy C. W. (1955). An anomalous pigmentation of the Malpighian tubules inDrosophila melanogaster associated with a variegated-type position effect on the eyes.Genetics (Abstr.).40: 567–568.Google Scholar
  19. Clausen R. E. (1923). Inheritance inDrosophila hydei I.white andvermilion eye-colours.Amer. Nat. 57: 52–58.Google Scholar
  20. Cohen J. (1962). Position-effect variegation at several closely linked loci inDrosophila melanogaster.Genetics 47: 647–659.Google Scholar
  21. Cooper K. W. (1944). Analysis of meiotic pairing ofOlfersia and consideration of the reciprocal chiasmata hypothesis of sex chromosome conjugation in maleDrosophila.Genetics 29: 537–568.Google Scholar
  22. Cooper K. W. (1956). Phenotypic effects of Y chromosome hyperploidy inDrosophila melanogaster, and their relation to variegation.Genetics 41: 242–264.Google Scholar
  23. Cooper W. K. (1959). Cytogenetic analysis of major heterochromatic elements (especially XH and Y) inDrosophila melanogaster, and the theory of “heterochromatin”.Chromosoma (Berl.) 10: 535–588.Google Scholar
  24. Crew F. A. E. & R. Lamy (1940). Spontaneous inverted exchange between X and Y inDrosophila melanogaster.J. Genet. 39: 273–284.Google Scholar
  25. Demerec, M. (1939). The nature of changes in thewhite-Notch region of the X-chromosome ofDrosophila melanogaster. Proc. 7th int. Congr. Genet. Edinburgh (J. Genet., Suppl. vol.) 99–103.Google Scholar
  26. Demerec M. (1941). The nature of the gene. Cytology, genetics and evolution. Univ. Penn. Bicent-Conf., 1–11. Philadelphia: Univ. of Penn. Press.Google Scholar
  27. Demerec M. & H. Slizynska (1937). Mottled white 258–18 ofDrosophila melanogaster.Genetics 22: 641–649.Google Scholar
  28. Dubinin N. P. & B. N. Sidorov (1934). Relation between the effect of a gene and its position in the system.Amer. Nat. 68: 377–381.Google Scholar
  29. Fristrom D. (1969). Cellular degeneration in the production of some mutant phenotypes inDrosophila melanogaster.Molec. Gen. Genetics 103: 363–379.Google Scholar
  30. Gans M. (1953). Etude génétique et physiologique du mutantz deDrosophila melanogaster.Bull. Biol. France et Belg. (Suppl.) 38: 1–90.Google Scholar
  31. Glass H. B. (1934). A study of dominant mosaic eye-color mutants inDrosophila melanogaster.Amer. Nat. 68: 107–114.Google Scholar
  32. Gowen J. W. & E. H. Gay (1933a). Eversporting as a function of the Y-chromosome inDrosophila melanogastre.Proc. Natl. Acad. Sci. (Wash) 19: 122–126.Google Scholar
  33. Gowen J. W. & E. H. Gay (1933b). Effect of temperature on eversporting eye color inDrosophila melanogaster.Science 77: 312.Google Scholar
  34. Gregg T. G. (1957). The production of attached-X chromosomes inDrosophila hydei.Univ. Tex. Publ. 5721: 238–245.Google Scholar
  35. Hannah A. (1951). Localisation and function of heterochromatin inDrosophila melanogaster.Adv. Genet. 4: 87–125.Google Scholar
  36. Heitz E. (1933). Die somatische Heteropyknose beiDrosophila melanogaster und ihre genetische Bedeutung (Cytologische Untersuchungen an Dipteren III).Z. Zellforsch. 20: 237–287.Google Scholar
  37. Heitz E. (1934). Eine Beziehung zwischen der genischen und strukturellen Längsdifferenziernng des X-Chromosoms vonDrosophila melanogaster.Z. ind. Abst.-u Vererbungslehre 67: 216–217.Google Scholar
  38. Hess O. (1967). Genetische Aktivität in translozierten Fragmenten des Y Chromosoms vonDrosophila hydei.Verh. Deutsch. Zool. Gesellsch. Heidelberg40: 439–453.Google Scholar
  39. Hess O. & M. M. Green (1965).Drosophil species, new mutants,D. hydei.Drosophila Information Service 40: 37–39.Google Scholar
  40. Hess O. & G. F. Mever (1963). Chromosomal differentiation of the lampbrushtype formed by the Y chromosome inDrosophila hydei andDrosophila neohydei.J. Cell. Biol. 16: 527–539.Google Scholar
  41. Hess O. & G. F. Meyer (1968). Genetic activities of the Y chromosome inDrosophila during spermatogenesis.Adv. Genet. 14: 171–223.Google Scholar
  42. Khvostova, V. V. (1939). The role played by the inert chromosome regions in the position effect of thecubitus interruptus gene inDrosophila melanogaster. Bull. Acad. Sci. USSR, Ser. Biol. pp.541–574.Google Scholar
  43. Lewis E. B. (1945). The relation of repeats to position effect inDrosophila melanogaster.Genetics 30: 137–166.Google Scholar
  44. Lewis E. B. (1950). The phenomenon of position effect.Adv. Genet. 3: 73–115.Google Scholar
  45. Lesley M. M., J. W. Lesley & R. K. Soost (1963). Variegation initiated by a dominant allele in the tomato.Genetics 48: 943–955.Google Scholar
  46. Lindsley D. L. (1955). Spermatogonial exchange between the X and Y chromosomes ofDrosophila melanogaster.Genetics 40: 24–44.Google Scholar
  47. Lindsley D. L., C. W. Edington & E. S.von Halle (1960). Sex-linked recessive lethals inDrosophila whose expression is suppressed by the Y chromosome.Genetics 45: 1649–1670.Google Scholar
  48. Lindsley, D. L. & E. H. Grell (1967). Genetic variations ofDrosophila melanogaster. Carneg. Inst. Wash. Publ. no.627.Google Scholar
  49. Mickey G. H. (1959). Observations on variegated positioneeffects inDrosophila melanogaster.Univ. Texas Publ. 5914: 99–105.Google Scholar
  50. Morgan T. H., C. B. Bridges & J. Schultz (1936). Constitution of the germinal material in relation to heredity.Carn. Inst. Wash. Year Book 35 (1936): 289–297.Google Scholar
  51. Mukherjee A. S. (1965). Cytological localisation of thewhite locus inDrosophila hydei.Drosophila Information Service 40: 70 (with permission).Google Scholar
  52. Muller H. J. (1930). Types of visible variations induced by X-rays inDrosophila.J. Genet. 22: 299–334.Google Scholar
  53. Muller H. J. (1948). The construction of several new types of Y chromosomes.Drosophila Information Service 22: 73–74.Google Scholar
  54. Muller H. J. (1951). Localization ofY:bw + insertion andcr-u sterile (ers).Drosophila Information Service 25: 119.Google Scholar
  55. Neuhaus M. (1937). Additional data on crossing-over between X and Y chromosomes inDrosophila melanogasterGenetics 22: 333–339.Google Scholar
  56. Nicoletti B. & D. L. Lindsley (1960). Translocation between the X and the Y chromosomes ofDrosophila melanogaster.Genetics 45: 1705–1722.Google Scholar
  57. Panshin I. B. (1941). The role of heterochromatin in the position effect of thewhite (mottled) andcubitus interruptus genes.Drosophila Information Service 15: 33–34.Google Scholar
  58. Perez-Dávila Y. & W. K. Baker (1967). Effect of actinomycin D on the development of the early imaginal eye disks ofDrosophila melanogaster.Devel. Biol. 16: 18–35.Google Scholar
  59. Philip U. (1935). Crossing-over between X and Y chromosomes inDrosophila melanogaster.J. Genet. 31: 341–352.Google Scholar
  60. Russell L. B. & J. W. Bangham (1959). Variegated-type position effects in the mouse.Genetics 46: 509–525.Google Scholar
  61. Safir S. R. (1920). Genetic and cytological examination of the phenomenon of primary non-disjunction inDrosophila melanogaster.Genetics 5: 459–487.Google Scholar
  62. Schultz, J. (1939). The function of heterochromatin.Proc. 7th Int. Congr. Genet. Edinburgh. (J. Genet. Suppl. vol.) 257–262.Google Scholar
  63. Schultz J. (1956). The relation of heterochromatic chromosome regions to the nucleic acids of the cell.Cold Spring Harbor Symp. quant. Biol. 21: 307–328.Google Scholar
  64. Schultz J. & Th. Dobshansky (1934). The relation of a dominant eye color inDrosophila melanogaster to the associated chromosome rearrangement.Genetics 19: 344–364.Google Scholar
  65. Serra J. A. Modern Genetics. Vol. 3. Academic Press, London 1968.Google Scholar
  66. Sidorov B. N. (1940). The causes of mosaicism in aberrations connected with breaks in the inert chromosome regions inDrosophila melanogaster.Bull. Biol. Med. exp. USSR 9: 10–12.Google Scholar
  67. Sidorov B. N. (1941). Spontancous mutations in thescute 8 inversion inDrosophila melanogaster.C. R. Acad. Sci. USSR 30: 248–249.Google Scholar
  68. Slatis H. M. (1955). Position effect at thebrown locus inDrosophilamelanogaster.Genetics 40: 5–23.Google Scholar
  69. Spencer W. P., (1949). Gene homologies and the mutants ofDrosophila hydei. p. 23–44 in: Genetics, Paleontology and Evolution. Edited by G. L. Jepsen, E. Mayr & G. G. Simpson. Princeton Univ. Press, Princeton N. J.Google Scholar
  70. Stern C. (1927). Ein genetischer und zytologischer Beweis für Verebung im Y-chromosom vonDrosophila melanogaster.Z. ind. Abst.-u. Vererb. lehre 44: 187–231.Google Scholar
  71. Stern C. & D. Doan (1936). A cytogenetic demonstration of crossing-over between the X-and Y-chromosomes in the male ofDrosophila melanogaster.Proc. Natl. Acad. Sci. (Wash.)22: 649–654.Google Scholar
  72. Sturtevant A. H. (1925). The effects of unequal crossing-over at theBar locus inDrosophila.Genetics 10: 117–147.Google Scholar
  73. Sutton-Gersh E. (1952). Pigmentation in a mottled white-eye due to position effect inDrosophila melanogaster.Genetics 37: 322–338.Google Scholar

Copyright information

© Martinus Nijhoff 1970

Authors and Affiliations

  • F. M. A. van Breugel
    • 1
  1. 1.Genetisch Laboratorium der RijksuniversiteitLeidenThe Netherlands

Personalised recommendations