Skip to main content
Log in

Complementation studies withinmet-3 and the location ofmet-4 inSchizosaccharomyces pombe

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The response to possible precursors of methionine was determined in 137 methionine-requiring mutants ofSchizosaccharomyces pombe. Probably, homocysteine is directly synthesized from homoserine and sulphate. One mutant, growing on synthetic medium with vitamin B12 only, indicates a side pathway. Six complementation groups were observed in a sample of 27 homocysteine-requiring mutants.Met-3 andmet-4 were found to be allelic with a distance smaller than 0.01 recombination unit, which demonstrates that the second linkage group inS. pombe, proposed earlier, is a continuation of the linkage group presented byLeupold (1958).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali A. M. M. (1966). Nitrous acid-induced mutants inSchizosaccharomyces pombe.Indian J. Genet. 26: 337–349.

    Google Scholar 

  • Ali A. M. M. (1967). A second linkage group and the possibility of mitotic recombination inSchizosaccharomyces pombe.Can. J. Genet. Cytol. 9: 473–481.

    Google Scholar 

  • Clowes R. C. (1958). Nutritional studies of cysteineless mutants ofSalmonella typhimurium.J. Gen. Microbiol. 18: 140–153.

    Google Scholar 

  • Hockenhull D. J. D. (1949). The sulfur metabolism of mold fungi. The use of biochemical mutant strains ofAspergillus nidulans in elucidating the biosynthesis of cystine.Biochem. Biophys. Acta 3: 326.

    Google Scholar 

  • Horowitz N. H. (1950). Biochemical genetics ofNeurospora.Adv. in Genetics 3: 33.

    Google Scholar 

  • Horowitz N. H. (1955).Symposium on amino acid metabolism. Discussion, 631, Baltimore: Johns Hopkins Press.

    Google Scholar 

  • Lampen J. O., Roepke R. R. & Jones M. J. (1947). Studies on the sulfur metabolism ofE. coli. III. Mutant strains ofE. coli unable to use sulfate for their complete sulfur requirements.Arch. Biochem. 13: 55.

    Google Scholar 

  • Leupold U. (1958). Studies on recombination inSchizosaccharomyces pombe.Cold Spr. Harb. Symp. Quant. Biol. 23: 161–170.

    Google Scholar 

  • Phinney B. O. (1948). Abstract inGenetics 33: 624. (Cited after Clowes, R. C. 1958).

    Google Scholar 

  • Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T. & Britten, R. L. (1955). Studies of biosynthesis inEscherichia coli. Publ. Carneg. Inst. 607: Washington, D.C.

  • Shepherd C. J. (1956). Pathways of cysteine synthesis inAspergillus nidulans.J. Gen. Microbiol. 15: 29.

    Google Scholar 

  • Simmonds S. (1948). Utilization of sulfur containing amino acids by mutant strains ofEscherichia coli.J. Biol. Chem. 174: 717.

    Google Scholar 

  • Steinberg R. A. (1941). Sulfur and trace element nutrition ofAspergillus niger.J. Agric. Res. 63: 109.

    Google Scholar 

  • Vogel H. J. (1955). A convenient growth medium forNeurospora.Microb. Genet. Bull. 13: 42–43.

    Google Scholar 

  • Wiehers J. L. & Garner H. R. (1964). Use of S-methyleysteine and cystathionine by methioninelessNeurospora mutants.J. Bacteriol. 88: 1798–1804.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, A.M.M. Complementation studies withinmet-3 and the location ofmet-4 inSchizosaccharomyces pombe . Genetica 41, 334–341 (1970). https://doi.org/10.1007/BF00958916

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00958916

Keywords

Navigation