Advertisement

Sources of optical activity in complexes of copper(II) with amino acids (proline, hydroxyproline, and allohydroxyproline)

  • A. A. Kurganov
  • L. Ya. Zhuchkova
  • V. A. Davankov
Organic Chemistry
  • 30 Downloads

Conclusions

  1. 1.

    The vicinal effect of the asymmetric nitrogen is not the dominant contribution to the optical activity of the complexes and scarcely exceeds the vicinal effect of the asymmetricγ-carbon.

     
  2. 2.

    The presence or absence of ligands in the axial positions of the complex markedly affects only the position of the weak2B1g2A1g transition.

     
  3. 3.

    The sign and amplitude of the dominant Cotton effect, which seems to represent the2B1g2B2g transition, is mainly determined by the chirality of the nonplanar chelate rings, whose conformations depend on the presence of substituents on the nitrogen andα-carbon of the ligand and on their interaction with the adjacent ligand and with solvent molecules coordinated in the axial positions.

     
  4. 4.

    The conformation of the chelate rings in the allohydroxyproline complexes is locked by the location of theγ-hydroxyl group close to the axial position of the copper.

     

Keywords

Nitrogen Copper Proline Solvent Molecule Hydroxyproline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. M. Wellman, W. Mungall, T. G. Mecca, and C. R. Hare, J. Am. Chem. Soc.,89, 3647 (1967);90, 805 (1968).Google Scholar
  2. 2.
    C. J. Hawkins, Absolute Configuration of Metal Complexes, Wiley-Interscience, New York (1971).Google Scholar
  3. 3.
    V. A. Davankov, S. V. Rogozhin, and A. A. Kurganov, Izv. Akad. Nauk SSSR, Ser. Khim.,1974, 1313.Google Scholar
  4. 4.
    S. V. Rogozhin, V. A. Davankov, A. A. Kurganov, and G. I. Timofeeva, Zh. Neorg. Khim.,19, 3294 (1974).Google Scholar
  5. 5.
    C. J. Hawkins and C. L. Wong, Austr. J. Chem.,23, 2237 (1970).Google Scholar
  6. 6.
    J. M. Tsangaris and R. B. Martin, J. Am. Chem. Soc.,92, 4255 (1970).Google Scholar
  7. 7.
    A. Neuberger, J. Chem. Soc.,1945, 429.Google Scholar
  8. 8.
    R. E. Bowman and U. U. Stroud, J. Chem. Soc.,1950, 1342.Google Scholar
  9. 9.
    V. A. Davankov and P. R. Mitchell, J. Chem. Soc., Dalton Trans.,1972, 1012.Google Scholar
  10. 10.
    G. A. Senyukova, A. A. Kurganov, A. T. Nikitaev, V. A. Davankov, and K. I. Zamaraev, Koord. Khim.,1, 400 (1975).Google Scholar
  11. 11.
    A. Albert and E. P. Serjeant, Determination of Ionization Constants, Halsted Press (1971).Google Scholar
  12. 12.
    F. Rossotti and H. Rossotti, Determination of Stability Constants and Other Equilibrium Constants in Solution [Russian translation], Mir (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • A. A. Kurganov
    • 1
  • L. Ya. Zhuchkova
    • 1
  • V. A. Davankov
    • 1
  1. 1.Institute of Heteroorganic CompoundsAcademy of Sciences of the USSRMoscow

Personalised recommendations