Advertisement

Effect of high pressure on the reaction of dipolar 1,3-cycloaddition between 4-nitrophenyl cyanate and benzyl azide and the role of the solvent

  • V. M. Zhulin
  • E. B. Zhuravleva
  • Z. G. Makarova
  • M. M. Krayushkin
Physical Chemistry
  • 27 Downloads

Conclusions

  1. 1.

    The observed volume activation effect (ΔV0) of the reaction of dipolar 1,3-cycloraddition between 4-nitrophenyl cyanate and benzyl azide in acetonitrile is a function of the ratio of the reagents and is 40–60% of the change in the volume in the reaction (ΔV0).

     
  2. 2.

    The accelerating effect of high pressure increases in conducting the reaction in conditions of the existence of the solvent (benzene) in the supercooled state; ¦ΔV0¦ is only 15% less than ¦ΔV0¦.

     
  3. 3.

    In consideration of the change in the viscosity with a change in the pressure (ΔVη), the volume activation effect (ΔVr) is similar to the volume effect of the reaction studied (ΔV0), which supports a cyclic transition state.

     

Keywords

Viscosity Benzene Acetonitrile High Pressure Transition State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. M. Zhulin and E. B. Zhuravleva, Dokl. Akad. Nauk SSSR,290, No. 2, 383 (1986).Google Scholar
  2. 2.
    H. A. Kramers, Physica,7, 284 (1940).Google Scholar
  3. 3.
    Ya. B. Zel'dovich, Zh. Éksp. Teor. Fiz.,12, 525 (1942).Google Scholar
  4. 4.
    J. Jonas, Accounts Chem. Res.,17, 74 (1984).Google Scholar
  5. 5.
    S. Glasstone, C. Leidler, and H. Eyring, The Theory of Absolute Reaction Rates [Russian translation], Inostr. Lit., Moscow (1948).Google Scholar
  6. 6.
    E. A. Melvin-Hughes, Equilibrium and Kinetics of Reactions in Solutions [Russian translation], Khimiya, Moscow (1975).Google Scholar
  7. 7.
    R. B. Dow, Phil. Magazine,28, No. 189, 403 (1939).Google Scholar
  8. 8.
    V. M. Zhulin, Z. G. Makarova, M. M. Krayushkin, et al., Dokl. Akad. Nauk SSSR,280, 917 (1985).Google Scholar
  9. 9.
    V. M. Zhulin, Z. G. Makarova, N. V. Klimentova, et al., Vysokomol. Soedin. A,24, 2621 (1982).Google Scholar
  10. 10.
    H. G. Parkhurst and J. Jonas, J. Chem. Phys.,63, 2705 (1975).Google Scholar
  11. 11.
    I. Artaki and J. Jonas, J. Chem. Phys.,82, 3360 (1985).Google Scholar
  12. 12.
    G. I. Nikishin, S. S. Spektor, G. P. Shakhovskoi, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 1664 (1976).Google Scholar
  13. 13.
    V. M. Zhulin, M. G. Gonikberg, and V. N. Zagorbinina, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 716 (1962).Google Scholar
  14. 14.
    B. S. El'yanov and E. M. Vasylvitskaya, Rev. Phys. Chem. Jpn.,50, 174 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • V. M. Zhulin
    • 1
  • E. B. Zhuravleva
    • 1
  • Z. G. Makarova
    • 1
  • M. M. Krayushkin
    • 1
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRMoscow

Personalised recommendations