Advertisement

Decomposition of H2O2 on copper-containing ion-exchange resins of the vinylpyridine series

  • A. I. Kokorin
  • E. L. Frumkina
  • V. D. Kopylova
  • A. N. Astanina
  • V. V. Berentsveig
Physical Chemistry
  • 24 Downloads

Abstract

By means of kinetic studies and EPR, it has been shown that, in the reaction of hydrogen peroxide decomposition in the presence of copper-containing anion-exchange resins of the vinylpyridine series AN-40, AN-25, and AN-251, the catalytic activity increases in a series of complexes of the following types: Cu(Py)22+<Cu(Py)32+<Cu(Py)42+. Increases in the degree of polymer cross-linking and increases in the content of copper complexes above 0.2 mg-ion/g lead to the appearance of steric hindrance to free diffusion of H2O2 molecules within the globules of resin, with a consequent decrease in specific catalytic activity of the ion-exchanger/metal complexes. It has been established by means of EPR and IR spectroscopy that in AN-25 and AN-251 CH3 groups of the coordinated units are oxidized to carboxyl, with a consequent change in composition and structure of the Cu(II) complexes in the resins. Moreover, the copper ions are partly washed out from the resin into the reaction medium.

Keywords

Catalytic Activity Steric Hindrance Copper Complex H2O2 Molecule Free Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. D. Kopylova, E. L. Frumkina, L. A. Mochalova, and K. M. Saldadze, Kinet. Katal.,19, No. 5, 1356 (1978).Google Scholar
  2. 2.
    V. D. Kopylova, E. L. Frumkina, L. A. Mochalova, and K. M. Saldadze, Kinet. Katal.,21, No. 5, 1354 (1980).Google Scholar
  3. 3.
    E. L. Frumkina, Candidate's Dissertation, Moscow State University, Moscow (1985).Google Scholar
  4. 4.
    A. I. Kokorin, A. N. Astranina, V. D. Kopylova, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 7, 1491 (1989).Google Scholar
  5. 5.
    A. I. Kokorin, K. I. Zamaraeva, V. Ya. Kovner, et al., Eur. Polym. J.,11, 719 (1975).Google Scholar
  6. 6.
    Yu. I. Skurlatov, A. I. Kokorin, S. O. Travin, et al., Vysokomol. Soedin., Ser. A,24, No. 9, 1874 (1982).Google Scholar
  7. 7.
    V. D. Kopylova, V. B. Kargman, L. N. Suvorova, et al., Zh. Fiz. Khim.,48, No. 6, 1500 (1974).Google Scholar
  8. 8.
    V. D. Kopylova, A. P. Rudenko, E. L. Frumkina, et al., Zh. Fiz. Khim.,57, No. 9, 2325 (1983).Google Scholar
  9. 9.
    A. P. Purmal', Doctoral Disseration, Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow (1970).Google Scholar
  10. 10.
    V. V. Berentsveig, O. E. Dotsenko, A. I. Kokorin, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 10, 2211 (1982).Google Scholar
  11. 11.
    A. I. Kokorin, V. V. Berentsveig, V. D. Kopylova, and E. L. Frumkina, Kinet. Katal.,24, No. 1, 181 (1983).Google Scholar
  12. 12.
    V. D. Skobeleva, I. P. Kolenko, L. S. Molochnikov, et al., Zh. Prikl. Khim.,60, No. 9, 2160 (1987).Google Scholar
  13. 13.
    V. D. Skobeleva, S. Yu. Men'shikov, L. S. Molochnikov, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 8, 1728 (1987).Google Scholar
  14. 14.
    V. D. Laskorin, L. A. Fedorova, N. G. Zhukova, and V. A. Goldobina, Zh. Prikl. Khim.,47, No. 6, 1248 (1974).Google Scholar
  15. 15.
    A. L. Shvarts, V. B. Kargman, G. I. Zalkind, et al., Zh. Fiz. Khim.,55, No. 9, 2369 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. I. Kokorin
    • 1
    • 2
    • 3
  • E. L. Frumkina
    • 1
    • 2
    • 3
  • V. D. Kopylova
    • 1
    • 2
    • 3
  • A. N. Astanina
    • 1
    • 2
    • 3
  • V. V. Berentsveig
    • 1
    • 2
    • 3
  1. 1.N. N. Semenov Institute of Physical ChemistryAcademy of Sciences of the USSRMoscow
  2. 2.Moscow Cooperative InstituteMoscow
  3. 3.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations