Polymer Bulletin

, Volume 16, Issue 2–3, pp 215–221 | Cite as

Transformations in the cellulose nitrate structure in the process of solvent vapor sorption

  • A. Ye. Chalych
  • Ye. D. Popova
  • A. N. Popov
  • D. M. Kheiker


A technique permitting to record structure transformations in a polymer film by X-ray analysis directly in the process of low molecular weight solvent vapor sorption is developed. Applying it to cellulose nitrate (CN) — ethyl acetate (EA) system evidences the formation of a set of crystalline reflections in the initially amorphous film at a definite EA vapor activity (p/ps≈ 0.6), the reflections disappearing after the removal of EA. The ordering of structure is associated with molecular complexes (MC) formation, MC being thermodynamically stable within a certain p/ps range. It proves the validity of a qualitative phase diagram offered for CN — EA system (6). The peculiarities of MC formation and destruction are bound to assist in interpretation of sorption and diffusion properties of the system in question.


Phase Diagram Ethyl Acetate Polymer Film Structure Transformation Molecular Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.Köningsveld,Brit.Polym.J.7,435 (1975).Google Scholar
  2. 2.
    S.P.Papkov, Phase Equilibria in Polymer — Solvent Systems, M.: Chimiya, 272 p. (1981) (in Russian).Google Scholar
  3. 3.
    G.Conio, et al., Macromolecules16,1264 (1983).Google Scholar
  4. 4.
    W.G.Miller, et al., J.Polym.Sci.: Polym.Symp.65,91 (1978).Google Scholar
  5. 5.
    B.Ginzburg, T.Siromyatnikova, S.Frenkel, Polym. Bull.13,139 (1985).Google Scholar
  6. 6.
    A.Ye.Chalych, Ye.D.Popova, Vysokomol. Soyed.A28,727(1986).Google Scholar
  7. 7.
    C.Trogus, T.Tomonari, K.Hess, Z.Phys.Chem.B16,351 (1932); J.R.Katz, et al., Z.Phys.Chem.A151, 145 (1930).Google Scholar
  8. 8.
    V.A.Golovin, Yu.M.Lotmentzev, Vysokomol. Soyed.A23,1310 (1981).Google Scholar
  9. 9.
    A.F.Sviridov, D.Ya.Tzvankin, A.I.Pertzin, Vysokomol.Soyed.A26,1553 (1984).Google Scholar
  10. 10.
    S.M.Aharoni, Polym.Prepr.22,116 (1981).Google Scholar
  11. 11.
    M.M.Yovleva, S.P.Papkov, Vysokomol.Soyed.A24,233 (1982).Google Scholar
  12. 12.
    G. Hayashi, et al., J.Chem.Soc.Japan;Chem.Ind.Chem. 1582 (1973).Google Scholar
  13. 13.
    M.Ye.Andrianova, et al., J.Appl.Cryst.15,626 (1982).Google Scholar
  14. 14.
    Yu.S.Anisimov, et al., Nucl.Instr.Methods179,503 (1981).Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • A. Ye. Chalych
    • 1
  • Ye. D. Popova
    • 1
  • A. N. Popov
    • 2
  • D. M. Kheiker
    • 2
  1. 1.Institute of Physical ChemistryAcademy of Sciences of the USSRMoscowUSSR
  2. 2.Institute of CrystallographyAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations