Advertisement

Cellular death and necrosis: Chemical, physical and morphologic changes in rat liver

  • G. Majno
  • Monika La Gattuta
  • T. E. Thompson
Article

Keywords

Public Health Morphologic Change Cellular Death 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerknecht, E. H.:Rudolf Virchow, Doctor, statesman, anthropologist. Madison, Wisconsin: Univ. Wisconsin Press 1953.Google Scholar
  2. Altmann, H. W.: Allgemeine morphologische Pathologie des Cytoplasmas. Die Pathobiosen. InF. Buechner et al., Handbuch der allgemeinen Pathologie, Bd. 2/1, S. 419. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  3. Baker, H. de C.: Ischaemic necrosis in the rat liver. J. Path. Bact.71, 135 (1956).Google Scholar
  4. Baker, J. R.: Cytological technique, III. edit. London: Methuen & Co. 1951.Google Scholar
  5. Barer, R., K. F. A. Ross andS. Tkaczyk: Refractometry of living cells. Nature (Lond.)171, 720 (1953).Google Scholar
  6. Bauer, J.: Modellversuche zur Koagulationsnekrose. Frankfurt. Z. Path.57, 122 (1943).Google Scholar
  7. Bayerle, H., andG. Borger. Über die Alkalisierungsvorgänge im nekrotischen Gewebe. Beitr. path. Anat.103, 215 (1939).Google Scholar
  8. Bechhold, H.: Colloids in Biology and Medicine. (Translated by J. G. M. Bullowa.) New York: Van Nostrand Co. 1919.Google Scholar
  9. Bell, E. T.: Cloudy swelling; a preliminary report. J. Amer. med. Ass.61, 455 (1913).Google Scholar
  10. Berenbom, M., P. I. Chang, H. E. Betz andR. E. Stowell: Chemical and enzymatic changes associated with mouse liver necrosisin vitro. Cancer Res.15, 1 (1955a).Google Scholar
  11. Berenbom, M., P. I. Chang andR. E. Stowell: Changes in mouse liver undergoing necrosisin vivo. Lab. Invest.4, 215 (1955b).Google Scholar
  12. Bessis, M.: Traité de cytologie sanguine, Tome 1. Paris: Masson & Cie 1954.Google Scholar
  13. Bessis, M.: Cytology of the blood and blood-forming organs, chapt. 8. New York: Grune & Stratton 1956.Google Scholar
  14. Bessis, M.: Microscopie de phase et microscopie électronique des cellules du sang. Biol. méd. (Paris)46, 1 (1957).Google Scholar
  15. Bessis, M.: Death of a cell. 16 mm. film. New York: Swift Motion Picture Labs., 161 Union Place, 1958.Google Scholar
  16. Beyer, R. E., L. Ernster, H. Loew andTina Beyer: Correlation of optical density and oxydative phosphorylation in reconstructed mitochondrial systems. Exp. Cell Res.8, 586 (1955).Google Scholar
  17. Borger, G., H. Bayerle, T. Mayr andE. Peters: Untersuchungen zur pathologischen Physiologie des Infarkts. III. Ammoniak und Milchsäure bei Nekrose und Autolyse. Hoppe-Seylers Z. physiol. Chem.237, 113 (1935).Google Scholar
  18. Borger, G., andT. Mayr: Untersuchungen zur pathologischen Physiologie des Infarkts. II. Die proteolytische Wirksamkeit des infarzierten Gewebes. Hoppe-Seylers Z. physiol. Chem.234, 245 (1935).Google Scholar
  19. Borger, G., T. Peters andM. Kurz: Untersuchungen zur pathologischen Physiologie des Infarkts. I. Der Gehalt des Infarktgewebes an reduziertem Glutathion und anderen Sulfhydrylgruppen. Hoppe-Seylers Z. physiol. Chem.217, 253 (1933).Google Scholar
  20. Bradley, H. C.: Studies of autolysis. VIII. The nature of autolytic enzymes. J. biol. Chem.52, 467 (1922a).Google Scholar
  21. Bradley, H. C.: Autolysis and atrophy. Physiol. Rev.2, 415 (1922b).Google Scholar
  22. Cain, H.: Hemmung des Eintritts der Koagulationsnekrose an Implantaten durch Oxalat und Fermentgifte. Frankfurt. Z. Path.58, 171 (1943).Google Scholar
  23. Caldwell, G. T.: Chemical changes in tuberculous tissues. J. infect. Dis.24, 81 (1919).Google Scholar
  24. Caldwell, P. C.: Intracellular pH. In Bourne and Danielli, Int. Rev. Cytol.5, 229 (1956).Google Scholar
  25. Cameron, G. R.: Pathology of the cell. Springfield, Ill.: Ch. C. Thomas 1951.Google Scholar
  26. Cameron, G. R., andW. A. E. Karunaratne: Carbon Tetrachloride cirrhosis in relation to liver regeneration. J. Path. Bact.42, 1 (1936).Google Scholar
  27. Cameron, G. R., andC. L. Oakley: Transplantation of liver. J. Path. Bact.38, 17 (1934).Google Scholar
  28. Caulfield, J., andB. Klionsky. Myocardial ischemia and early infarction: an electron microscopic study. Amer. J. Path.35, 489 (1959).Google Scholar
  29. Chang, J. P., R. E. Stowell, H. E. Betz andM. Berenbom: Histochemical studies of necrosis of mouse liverin vitro. Arch. Path. (Chicago)65, 479 (1958).Google Scholar
  30. Cleland, K. W.: Permeability of isolated rat heart sarcosomes. Nature (Lond.)170, 497 (1952).Google Scholar
  31. Cohn, E. J., D. M. Surgenor andMargaret J. Hunter: The state in nature of proteins and protein enzymes of blood and liver. In: Enzymes and enzyme systems, p. 105.J. T. Edsall, Ed., Cambridge, Mass.: Harvard University Press 1951.Google Scholar
  32. Cohnheim, J.: Lectures on general pathology. Section II. London: New Sydenham Society 1889.Google Scholar
  33. Davson, H., andJ. F. Danielli: The permeability of natural membranes, II. edit., p. 195. Cambridge: Cambridge University Press 1952.Google Scholar
  34. Duve, de C.: Lysosomes, a new group of cytoplasmic particles. In: Subcellular particles,T. Hayashi, Ed., p. 128. New York, The Ronald Press Co. 1959.Google Scholar
  35. Dixon, K. C.: Cytochemical changes in necrotic grey matter of the brain. J. Path. Bact.66, 262 (1953).Google Scholar
  36. Dixon, K. C.: Persistence of protein in infarcts. J. Path. Bact.71, 37 (1956).Google Scholar
  37. Duke-Elder, Sir W. S.: Text-book of ophthalmology, vol. III, p. 3102. St. Louis: C. V. Mosby Comp. 1941.Google Scholar
  38. Duthie, E. S.: Mitochondrial changes in autoplastic liver transplants. J. Path. Bact.41, 311 (1935).Google Scholar
  39. Emmel, V. M.: Mitochondrial and pH changes in the rat's kidney following interruption and restoration of the renal circulation. Anat. Rec.78, 361 (1940).Google Scholar
  40. Fahr, E.: Trübe Schwellung oder kadaveröse Veränderung? Fluorescenzmikroskopische Untersuchungen. Frankfurt. Z. Path.57, 533 (1943a).Google Scholar
  41. Fahr, E.: Förderung pathologisch-anatomischer Probleme durch die Fluoreszenzmikroskopie. Virchows Arch. path. Anat.310, 123 (1943b).Google Scholar
  42. Fonnesu, A.: Consumo di ossigeno e ossidazione degli acidi grassi inferiori nel rene in rigonfiamento torbido sperimentale. Arch. Sci. biol. (Bologna)38, 1 (1954).Google Scholar
  43. Fonnesu, A., eClara Severi: Comportamento della fosfatasi alcalina nel rene in regonfiamento torbido. Riv. Biol.44, 381 (1952).Google Scholar
  44. Fonnesu, A., andClara Sevbri: Nucleic acids in the kidney in cloudy swelling. Brit. J. exp. Path.34, 341 (1953).Google Scholar
  45. Fonnesu, A., andClara Severi: Phosphorylation mechanisms in cloudy swelling. Experientia (Basel)10, 28 (1954).Google Scholar
  46. Fricke, O., H. Groll andE. Meyer: Chemische Untersuchungen zur Frage der trüben Schwellung. Beitr. path. Anat.83, 135 (1929).Google Scholar
  47. Gaidukov, N.: Dunkelfeldbeleuchtung und Ultramikroskopie in der Biologie und in der Medizin. Jena: Georg Fischer 1910.Google Scholar
  48. Gallagher, C. H., J. D. Judah andK. R. Rees: Enzyme changes during liver autolysis. J. Path. Bact.72, 247 (1956).Google Scholar
  49. Gansler, H., andC. Rouiller: Modifications physiologiques et pathologiques du chondriome. Schweiz. Z. Path.19, 217 (1956).Google Scholar
  50. Giese, A. C.: Cell physiology. Philadelphia and London: W. B. Saunders Company 1957.Google Scholar
  51. Gilding, H. P.: The relative reaction within living mammalian tissues. XIII. The reaction prevailing during the autolysisin vivo of small tissue masses. J. exp. Med.52, 953 (1930).Google Scholar
  52. Goldfeder, Anna: Über die in bösartigen Geschwülsten vorkommenden pH-Werte. Z. Krebsforsch.29, 134 (1929).Google Scholar
  53. Graeff, S., andA. E. Rappoport: Methoden und Ergebnisse der Bestimmung der Wasserstoffionenkonzentration des tierischen Gewebes. Ergebn. Anat. Entwickl.-Gesch.33, 181 (1937).Google Scholar
  54. Groll, H.: Kernschwund und Protoplasmagerinnung bei der Koagulationsnekrose. Virchows Arch. path. Anat.316, 384 (1949).Google Scholar
  55. Guest, M. M.: Carbohydrate storage and mobilization in the rat. J. Nutr.22, 205 (1941).Google Scholar
  56. Guillermond, A.: La structure des cellules végétales à l'ultramicroscope. Protoplasma (Berl.)16, 454 (1932).Google Scholar
  57. Guillery, H.: Über den Nachweis anoxämischer und dysorischer Gewebeschädigungen am Transplantat. Virchows Arch. path. Anat.304, 317 (1939a).Google Scholar
  58. Guillery, H.: Weitere Versuche zum Nachweis dysorischer und anoxämischer Schädigungen am Transplantat und Explantat. Frankfurt. Z. Path.53, 522 (1939b).Google Scholar
  59. Hamperl, H.: Die Fluorescenzmikroskopie menschlicher Gewebe. Virchows Arch. path. Anat.292, 1 (1934).Google Scholar
  60. Harman, J. W.: Cytochondrial aspects of cellular pathology. J. clin. Path.11, 495 (1958).Google Scholar
  61. Harman, J. W., andR. P. Gwinn: The recovery of skeletal muscle fibers from acute ischemia as determined by histologic and chemical methods. Amer. J. Path.25, 741 (1949).Google Scholar
  62. Harreveld, A. van: Changes in volume of cortical neuronal elements during asphyxiation. Amer. J. Physiol.191, 233 (1957).Google Scholar
  63. Heilbrunn, L. V.: The dynamics of living protoplasm. New York: Academic Press 1956.Google Scholar
  64. Himsworth, H. P.: Lectures on the liver and its diseases, p. 34. Cambridge, Mass.: Harvard University Press 1950.Google Scholar
  65. Himsworth, H. P., andL. E. Glynn: The gross chemical changes in the liver in dietetic necrosis. Biochem. J.39, 267 (1945).Google Scholar
  66. Hoppe-Seyler, G.: Über die Zusammensetzung der Leber, besonders ihren Eiweißgehalt in Krankheiten. Hoppe-Seylers Z. physiol. Chem.116, 67 (1921).Google Scholar
  67. Hoppe-Seyler, G.: Über die Zusammensetzung der Leber, besonders ihren Eiweißgehalt in Krankheiten. 2. Mitt. Hoppe-Seylers Z. physiol. Chem.130, 217 (1923).Google Scholar
  68. Hoppe-Seyler, G.: Beitrag zur Kenntnis der trüben Schwellung auf Grund chemischer Untersuchungen. Krankheitsforsch.6, 323 (1928).Google Scholar
  69. Israel, O.: Die anämische Nekrose der Nierenepithelien. Experimentelle Untersuchung. Virchows Arch. path. Anat.123, 310 (1891).Google Scholar
  70. Jacoby, M.: Zur Frage der spezifischen Wirkung der intracellulären Fermente. Beitr. chem. Physiol. Path.3, 446 (1903).Google Scholar
  71. Kaltenbach, J. P., Merle H. Kaltenbach andW. B. Lyons: Nigrosin as a dye for differentiating live and dead ascites cells. Exp. Cell Res.15, 112 (1958).Google Scholar
  72. King, D. W., S. R. Paulson, N. C. Hannaford andA. T. Krebs: Cell death. I. The effect of injury on the proteins and desoxyribonucleic acid of Ehrlich tumor cells. Amer. J. Path.35, 369 (1959a).Google Scholar
  73. King, D. W., S. R. Paulson, N. C. Hannaford andA. T. Krebs: Cell death. II. The effect of injury on the enzymatic protein of Ehrlich tumor cells. Amer. J. Path.35, 575 (1959b).Google Scholar
  74. King, D. W., S. R. Paulson, N. L. Puckett andA. T. Krebs. Cell death. III. The effect of injury on water and electrolytes of Ehrlich tumor cells. Amer. J. Path.35, 835 (1959c).Google Scholar
  75. King, D. W., S. R. Paulson, N. L. Puckett andA. T. Krebs: Cell death. IV. The effect of injury on the entrance of vital dye in Ehrlich tumor cells. Amer. J. Path.35, 1067 (1959d).Google Scholar
  76. Koller, F., u.F. Leuthardt: Nekrose und Autolyse, Beitrag zur Kenntnis der dystrophischen Verkalkung. Klin. Wschr.2, 1527 (1934).Google Scholar
  77. Krause, A. C.: Chemistry of the lens. III. Autolysis of lenticular proteins. Arch. Ophthal. (Chicago), N. s.10, 631 (1933).Google Scholar
  78. Lancker, J. L. van, andR. L. Holtzer: The release of acid phosphatase and beta-glucuronidase from cytoplasmic granules in the early course of autolysis. Amer. J. Path.35, 563 (1959).Google Scholar
  79. Landsteiner, K.: Über trübe Schwellung. Beitr. path. Anat.33, 237 (1903).Google Scholar
  80. Leaf, A.: On the mechanism of fluid exchange of tissues in vitro. Biochem. J.62, 241 (1956).Google Scholar
  81. Lehninger, A. L.: Physiology of mitochondria. In: Enzymes. Units of biological structure and function, p. 217. New York: Academic Press 1956.Google Scholar
  82. Lehninger, A. L.: Metabolic interactions in cell structures. In: Developmental cytology, p. 191, edit. D. Rudnick. New York: Ronald Press Co. 1959a.Google Scholar
  83. Lehninger, A. L., andMarion Schneider: Mitochondrial swelling induced by glutathione. J. biophys. biochem. Cytol.5, 109 (1959b).Google Scholar
  84. Lepeschkin, W.W.: Kolloidchemie des Protoplasmas. Berlin: Springer 1924.Google Scholar
  85. Lepeschkin, W. W.: Über physikalisch-chemische Ursachen des Todes. Biol. Zbl.46, 480 (1926).Google Scholar
  86. Lepeschkin, W.W.: Zell-Nekrobiose und Protoplasma-Tod. Protoplasma-Monogr.12 (1937).Google Scholar
  87. Lewis, Margaret R.: Reversible gelation in living cells. Bull. Johns Hopk. Hosp.34, 373 (1923).Google Scholar
  88. Lewis, W. H.: Observations on cells in tissue-cultures with dark-field illumination. Anat. Rec.26, 29 (1923).Google Scholar
  89. Luck, J. M., J. Eudin andC. C. Nimmo. Autolytic changes in the protein and amino acid content of liver. J. biol. Chem.131, 201 (1939).Google Scholar
  90. Lucké, B., andM. McCutcheon: Reversible and irreversible swelling of living and of dead cells. Arch. Path. Lab. Med.2, 846 (1926).Google Scholar
  91. Lucké, B., andM. McCutcheon: The living cell as an osmotic system and its permeability to water. Physiol. Rev.12, 68 (1932).Google Scholar
  92. Majno, G., andW. E. Bunker: Preparation of tissue slices for metabolic studies: a handmicrotome expecially suitable for brain. J. Neurochem.2, 11 (1957).Google Scholar
  93. Majno, G., andM. L. Karnovsky: A biochemical and morphologic study of myelination and demyelination. I. Lipide biosynthesis in vitro by normal nervous tissue. J. exp. Med.107, 475 (1958a).Google Scholar
  94. Majno, G., andM. L. Karnovsky. A biochemical and morphologic study of myelination and demyelination. II. Lipogenesis in vitro by rat nerves following transection. J. exp. Med.108, 197 (1958b).Google Scholar
  95. Majno, G., andC. Rouiller: Die alkalische Phosphatase in der Biologie des Knochengewebes. Virchows Arch. path. Anat.321, 1 (1951).Google Scholar
  96. Malpighi, M.: Marcelli Malpighii Philosophi et Medici Bononiensis e Regia Societate Londinensi Opera Posthuma. (De Structura Glandularum Conglobatarum, Consimiliumque Partium, Epistola; p. 144.) Amstelodami, Apud Donatum Donati, 1700.Google Scholar
  97. Moegen, P.: Über die Wirkung von Proteinasen und koaguliertes Gewebe. Frankfurt. Z. Path.54, 352 (1940).Google Scholar
  98. Moore, D. H., H. Ruska andW. M. Copenhaver: Electron microscopic and histochemical observations of muscle degeneration after tourniquet. J. biophys. biochem. Cytol.2, 755 (1956).Google Scholar
  99. Moritz, A. R.: The pathology of trauma, II. edit. Philadelphia: Lea and Febiger 1954.Google Scholar
  100. Mueller, E.: Der Zelltod. InF. Buechner et al., Handbuch der allgemeinen Pathologie, Bd. 2/1, p. 613. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  101. Mueller, R.: Über feinere gewebliche Veränderungen bei der Gerinnungsnekrose und Autolyse untersucht am Nereninfarkt. Frankfurt. Z. Path.52, 433 (1938).Google Scholar
  102. Oberling, C., andC. Rouiller. Les effects de l'intoxication aiguë au tétrachlorure de carbone sur le foie du rat. Etude au microscope électronique. Ann. anat. path.1, 401 (1956).Google Scholar
  103. Osterhout, W. J. V.: Injury, recovery, and death, in relation to conductivity and permeability. Monographs in experimental biology, p. 40. J. Loeb et al. Philadelphia and London: J. B. Lippincott Company 1922.Google Scholar
  104. Palade, G. E.: A study of fixation for electron microscopy. J. exp. Med.95, 285 (1952).Google Scholar
  105. Pogell, B. M., andR. W. McGilvery: The proteolytic activation of fructose-1-6-diphosphatase. J. biol. Chem.197, 293 (1952).Google Scholar
  106. Popják, G.: The mechanism of parenchymatous degeneration produced by diphtheria toxin. J. Path. Bact.60, 75 (1948).Google Scholar
  107. Porter, K. R.: Observations on a submicroscopic basophilic component of cytoplasm. J. exp. Med.97, 727 (1953).Google Scholar
  108. Price, C. A., and R. E.Davies: Active transport of water by mitochondria. Biochem. J.58, 17 P (1954).Google Scholar
  109. Price, C. A., A. Fonnesu andR. E. Davies: Movements of water and ions in mitochondria. Biochem. J.64, 754 (1956).Google Scholar
  110. Price, R. S.: Some studies on the structure of the plant cell by the method of darkground illumination. Ann. Botany28, 601 (1914).Google Scholar
  111. Raaflaub, J.: Die Schwellung isolierter Leberzellmitochondrien und ihre physikalischchemische Beeinflußbarkeit. Helv. physiol. pharmacol. Acta11, 142 (1953).Google Scholar
  112. Rahn, O.: Chemistry of death. Cold. Spr. Harb. Symp. quant. Biol.7, 70 (1934).Google Scholar
  113. Recklinghausen, F. v.: Untersuchungen über Rachitis und Osteomalazie, S. 18. Jena: Gustav Fischer 1910.Google Scholar
  114. Recknagel, R. O., andS. Malamed: The osmotic nature of mitochondrial swelling produced by carbon tetrachloride and inorganic phosphate. J. biol. Chem.232, 705 (1958).Google Scholar
  115. Robins, B., D. E. Smith andKathryn M. Eydt: The quantitative histochemistry of the cerebral cortex. I. Architectonic distribution of ten chemical constituents in the motor and visual cortices. J. Neurochem.1, 54 (1956).Google Scholar
  116. Rous, P.: The relative reaction within living mammalian tissues. I. General features of vital staining with litmus. J. exp. Med.41, 379 (1925a).Google Scholar
  117. Rous, P.: The relative reaction within living mammalian tissues. II. On the mobilization of acid material within the cells, and the reaction as influenced by the cell state. J. exp. Med.41, 399 (1925b).Google Scholar
  118. Rous, P.: The relative reaction within living mammalian tissues. VI. Factors determining the reaction of skin grafts; a study by the indicator method of conditions within an ischemic tissue. J. exp. Med.44, 815 (1926).Google Scholar
  119. Russo, P.: Recherches ultramicroscopiques touchant l'action de divers agents extérieurs sur les conditions de vie du protoplasma. Arch. int. Physiol.10, 90 (1910).Google Scholar
  120. Schmoll, E.: Über die chemische Zusammensetzung von tuberkulösem Käse. Dtsch. Arch. klin. Med.81, 163 (1904).Google Scholar
  121. Schrek, R., andJ. N. Ott: Study of the death of irradiated and nonirradiated cells by timelapse cinemicrography. Arch. Path. (Chicago)53, 362 (1952).Google Scholar
  122. Sevringhaus, E. L.: Postmortem acidity. I. The acids formed in autolyzing liver. J. biol. Chem.57, 181 (1923a).Google Scholar
  123. Sevringhaus, E. L.: Postmortem acidity. II. Phosphoric acid liberation in liver autolysis. J. biol. Chem.57, 191 (1923b).Google Scholar
  124. Sevringhaus, E. L., A. E. Koehler andH. C. Bradley: Studies of autolysis. IX. Hydrogen ion concentration in autolysis. J. biol. Chem.57, 163 (1923).Google Scholar
  125. Siedentopf, H., andR. Zsigmondy: Über Sichtbarmachung und Größenbestimmung ultramikroskopischer Teilchen mit besonderer Anwendung auf Goldrubingläser. Ann. Physik.10, 1 (1903).Google Scholar
  126. Sjøstrand, F. S., andV. Hanzon: Membrane structures of cytoplasm and mitochondria in exocrine cells of mouse pancreas as revealed by high resolution electron microscopy. Exp. Cell Res.7, 393 (1954).Google Scholar
  127. Smith, E. B., P. R. Beamer, F. Vellios andD. M. Schulz: Principles of human pathology, p. 11. New York: Oxford University Press 1959.Google Scholar
  128. Spector, W. G.: The role of some higher peptides in inflammation. J. Path. Bact.63, 93 (1951).Google Scholar
  129. Stieglitz, E. J.: Histologic hydrogen-ion studies of the kidney. Arch. intern. Med.33, 483 (1924).Google Scholar
  130. Stowell, R. E.: Effect on tissue volume of various methods of fixation, dehydration, and embedding. Stain Technol.16, 67 (1941).Google Scholar
  131. Stowell, R. E., M. Berenbom andP. I. Chang: Biochemical and histochemical studies ofin vivo andin vitro necrosis of liver tissue. Amer. J. Path.30, 618 (1954).Google Scholar
  132. Strangeways, T. S., andR. G. Canti: The living cellin vitro as shown by dark-ground illumination and the changes induced in such cells by fixing reagents. Quart. J. micr. Sci.71, 1 (1927).Google Scholar
  133. Teale, F. W. J., andG. Weber: Ultraviolet fluorescence of the aromatic amino acids. Biochem. J.65, 476 (1957).Google Scholar
  134. Teale, F. W. J., and G.Weber: Ultraviolet fluorescence of proteins. Biochem. J.72, 15 P (1959).Google Scholar
  135. Tedeschi, H., andD. L. Harris: The osmotic behavior and permeability of mitochondria. Arch. Biochem.58, 52 (1955).Google Scholar
  136. Uher, V.: Die parenchymatöse Degeneration. Virchows Arch. path. Anat.281, 821 (1931).Google Scholar
  137. Uher, V.: Ein Beitrag zur trüben Schwellung. Beitr. path. Anat. Path.102, 544 (1939).Google Scholar
  138. Virchow, R.: Über parenchymatöse Entzündung. Virchows Arch. path. Anat.4, 261 (1852).Google Scholar
  139. Virchow, R.: Cellular pathology as based upon physiological and pathological histology. (Translated from II edition of original by F.Chance.) New York: Robert M. de Witt 1860.Google Scholar
  140. Virchow, R.: Über das Verhalten abgestorbener Theile im Innhern des menschlichen Körpers mit besonderer Beziehung auf die käsige Pneumonie und die Lungentuberculose. Verh. der Berlin. Med. Ges., Sitzg vom 14. Nov. 1865. Berlin 1867.Google Scholar
  141. Weigert, C.: Über die pathologischen Gerinnungsvorgänge. Virchows Arch. path. Anat.79, 87 (1880).Google Scholar
  142. Weiss, C., J. Tabachnik andH. P. Cohen: Mechanism of softening of tubercles. III. Hydrolysis of proteins and nucleic acid during anaerobic autolysis of normal and tuberculous lung tissue in vitro. Arch. Path. (Chicago)57, 179 (1954).Google Scholar
  143. Wells, H. G.: The relation of autolysis to the histological changes occurring in necrotic areas. J. med. Res. (N. s. X)15, 149 (1906).Google Scholar
  144. Wells, H. G.: Chemical Pathology, 5th Ed. Philadelphia and London: W. B. Saunders Company 1925.Google Scholar
  145. Whittam, R., andR. E. Davies: Active transport of water, sodium, potassium and α-oxoglutarate by kidney-cortex slices. Biochem. J.55, 880 (1953).Google Scholar
  146. Witter, R. F., andM. A. Cottone: A study of some factors involved in the swelling of isolated mitochondria. The effect of lysolecithin and related compounds on the swelling of isolated mitochondria. Biochem. biophys. Acta22, 364 (1956).Google Scholar
  147. Yokoyama, H. O., Margaret E. Wilson, K. K. Tsuboi andR. E. Stowell: Regeneration of mouse liver after partial hepatectomy. Cancer Res.13, 80 (1953).Google Scholar
  148. Zollinger, H. U.: Phasenmikroskopische Beobachtungen über Zelltod. Schweiz. Z. Path.11, 276 (1948a).Google Scholar
  149. Zollinger, H. U.: Trübe Schwellung und Mitochondrien (phasenmikroskopische Untersuchungen). Schweiz. Z. Path.11, 617 (1948b).Google Scholar
  150. Zollinger, H. U.: Cytologic studies with the phase microscope. I. The formation of „blisters“ on cells in suspension (potocytosis), with observations on the nature of the cellular membrane. Amer. J. Path.24, 545 (1948c).Google Scholar
  151. Zollinger, H. U.: Cytologic studies with the phase microscope. III. Alterations in the nuclei of „resting“ and dividing cells induced by means of fixatives, anisotonic solutions, acids and alkali. Amer. J. Path.24, 797 (1948d).Google Scholar
  152. Zollinger, H. U.: Cytologic with the phase microscope. IV. Morphologic changes associated with death of cellsin vitro andin vivo. Amer. J. Path.24, 1039 (1948e).Google Scholar

Copyright information

© Springer-Verlag 1960

Authors and Affiliations

  • G. Majno
    • 1
    • 2
  • Monika La Gattuta
    • 1
    • 2
  • T. E. Thompson
    • 1
    • 2
    • 3
  1. 1.Department of PathologyHarvard Medical SchoolBoston
  2. 2.Department of Biological ChemistryHarvard Medical SchoolBoston
  3. 3.Department of Physiological ChemistryJohn Hopkins School of MedicineBaltimoreUSA

Personalised recommendations