International Journal of Fracture

, Volume 10, Issue 1, pp 33–43 | Cite as

Adhesive fracture mechanics

  • S. J. Bennett
  • K. L. Devries
  • M. L. Williams
Article

Abstract

Recently Williams, Malyshev and Salganik and others have applied the concepts of fracture mechanics to predict adhesive fracture. The specific adhesive fracture energy, γa, is defined as the energy released per unit of new surface created on separation of dissimilar materials. Williams has elucidated the similarity between adhesive and cohesive fracture from the standpoint of a Griffith energy balance analysis. One finds that for either cohesive or adhesive fracture, crack instability (where the crack has a characteristic dimension,a) is predicted by a general equation of the form\(\sigma _{cr} = k\sqrt {E\gamma /a}\) wherek=f [geometry and loading] and includes all loading and geometric factors,E and γ are Young's modulus and specific fracture energy, respectively, and σcr is the applied load at incipient failure.

Within the fracture mechanics interpretation the adhesive fracture energy γa is viewed as a fundamental property of the adhesive system. It is important to note, however, that it may depend on surface preparation, curing conditions, absorbed monolayers, etc. It is, therefore, essential that if γa is used to predict adhesive fracture for different geometries, then the surface preparation must be identical with that for the test specimen.

If γa is a system parameter, then it would be possible to predict fracture by conducting an energy balance analysis of the configuration, utilizing values of γa, Young's modulus, and Poisson's ratio as determined from separate simple test specimens.

There is, however, a need to establish that γa is a system parameter which is independent of geometry. One can in principle perform a number of tests on several specimen configurations or, more effectively, several tests on a single specimen which changes configuration between successive tests. In this latter case the surface and dissimilar materials remain constant. A specimen which is suitable for our purpose was developed by Williams and Jones by incorporating aspects of tests first suggested by Dannenburg and Salganik and Malyshev.

The test method considers a disk or plate which has been bonded to a substrate material except for a central portion of radiusa. When pressure,p, is injected into the unbonded region, the plate lifts off the substrate and forms a blister whose radius stays fixed until a critical pressure,pcr, is reached. At this critical value the radius of the blister increases in size, signifying an adhesive failure along the interface.

An energy balance analysis is available for the circular blister specimen in the two limiting cases of a thick plate (Williams) or a very thick medium (Mossakovskii), each with an infinite outer radius. Having established the utility of this general test method, we have considered it necessary to extend the analysis and test calibration capability to other thicknesses for more general engineering applications, as for example, very thin membranes which are used in paint coatings.

An axisymmetric finite element numerical analysis was, therefore, conducted for specimens of different thickness and debond radii to establish the energy balance for the various arbitrary thicknesses. A continuous curve for arbitrary specimen thickness was then produced on a dimensionless plot ofp 2 a/Eγ versush/a whereh is the specimen thickness. The region ofh/a over which the limiting case equations are valid was also established within the accuracy of the numerical analysis. Since many, if not most, bond geometries are not readily analyzed in closed form, the numerical procedures for energy balance analysis is included and may be used for analyzing geometries other than the blister test specimens.

Experiments were conducted over a broad range ofh/a and found to agree with the analytical elasticity solutions which assumed a constant (for given surface preparation, temperature, loading conditions, strain rate independence, etc.) value for γa. These experiments confirm that for this system at least γa is a constant independent of geometry.

Keywords

Adhesive Fracture Specific Fracture Energy Axisymmetric Finite Element Blister Test General Test Method 

Résumé

L'application par Williams, Malyshev, Salganik et autres de la mécanique de rupture pour prédire la rupture des adhésifs a conduit à définir γa, énergie spécifique de rupture, à élucider la similitude entre rupture d'adhésion et de cohésion au point de vue de l'analyse de l'équilibre énergétique de Griffith, et à prédire l'instabilité d'une fissure de dimension caractéristique “a” par une équation générale de la forme\(\sigma _{cr} = k\sqrt {E\gamma /a}\), valable pour la rupture de cohésion ou d'adhésion.

En termes de mécanique de rupture, l'énergie de rupture d'adhésion γa est considérée comme une propriété fondamentale d'un système collé, mais elle dépend de la préparation de la surface, des conditions de polymérisation etc... Dès lors, il est essentiel de maintenir ces paramètres constants lorsque l'on examine différentes géométries. Dans ces conditions, moyennant la détermination de γa du module de Young, et du rapport de Poisson à l'aide d'essais simples et distincts, on doit pouvoir prédire la rupture par une analyse d'équilibre énergétique. Mais ceci implique que γa soit un paramètre du système indépendant de la géométrie.

Des expériences, conduites sur un type nouveau d'éprouvettes développé par Williams et Jones ont permis de conclure que γa était une constante indépendante de la géométrie, à tout le moins pour un type déterminé de système.

Zusammenfassung

Die Anwendung der Bruchmekanik durch Williams, Malyshev, Salganik und andere, um den Bruch von Klebstoffen vorauszusagen, hat zur Definition von γa geführt, sowie zur Erläuterung der Ähnlichkeit zwischen dem Adesiven- und dem Cohesivenbruch begründet auf die Analyse des Energiegleichgewichtes nach Griffith, sowie die Voraussagung der Unbeständigkeit eines Risses, mit karakteristischen Abmessungen “a”, durch eine allgemeine Gleichung des Typs\(\sigma _{cr} = k\sqrt {E\gamma /a}\) gültig für Cohesiv oder Adesivbruch.

Auf dem Gebiet der Bruchmekanik wird die Energie γa des Adesifbruches als eine Grundeigenschaft des geklebten Systems angesehen, aber sie hängt von der Oberflächenvorbereitung, der Polymerisations Bedingungen und so weiter ab. Daher ist es ausschlaggebend diese Parametern konstant zu halten wenn man verschiedene Geometrien untersucht. Unter diesen Bedingungen, indem man γa, das Modul von Young und den Koefficient von Poisson mittels einfachen und unabhängigen Versuche bestimmt, muss es möglich sein mittels einer Energiegleichgewichtsanalyse den Bruch vorauszusagen. Dies bedingt dass γa ein von der Geometrie unabhängiger Parameter des Systems ist.

Versuche auf einem neuen Typ von Proben, entwickelt durch Williams und Jones, ermöglichten die Schlussfolgerung dass γa eine von der Geometrie unabhängige Konstante ist, wenigstens für ein gegebenes System.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. L. Williams, Stress Singularities, Adhesion, and Fracture,Proceedings of the Fifth U.S. National Congress of Applied Mechanics, (1966) 451–464.Google Scholar
  2. [2]
    A. A. Griffith, The Phenomena of Rupture and Flow in Solids,Philosophical Transactions of the Royal Society of London, 221 (1921) 163–198.Google Scholar
  3. [3]
    Robert L. Patrick, ed.,A Treatise on Adhesion and Adhesives, 1 and 2, New York: Marcel Dekker, Inc., 1969.Google Scholar
  4. [4]
    J. D. Burton, W. B. Jones and M. L. Williams, Theoretical and Experimental Treatment of Fracture in an Adhesive Interlayer,Transactions of the Society of Rheology, 15:1, (1971) 39–50.Google Scholar
  5. [5]
    H. Dannenberg, Measurement of Adhesion,Journal of Applied Polymer Science, 5 (1961) 125–134.Google Scholar
  6. [6]
    B. M. Malyshev and R. L. Salganik, The Strength of Adhesive Joints Using the Theory of Cracks,International Journal of Fracture Mechanics, 1 (1965) 114–128.Google Scholar
  7. [7]
    S. Timoshenko and S. Woinowsky-Krieger,Theory of Plates and Shells, New York: McGraw-Hill Book Company, 1959.Google Scholar
  8. [8]
    V. I. Mossakovskii and M. T. Rybka. Generalization of the Griffith-Sneddon Criterion for the Case of a Non-Homogeneous Body,PPM, 28 (1964) 1061–1069.Google Scholar
  9. [9]
    M. L. Williams, Large Deflection Analysis for a Plate Strip Subjected to Normal Pressure and Heating,Journal of Applied Mechanics, 22: 4 (December 1955) 458–464.Google Scholar
  10. [10]
    M. L. Williams, Further Large Deflection Analysis for a Plate Strip Subjected to Normal Pressure and Heating,Journal of Applied Mechanics, 25, 2. June 1958.Google Scholar
  11. [11]
    M. L. Williams, The Continuum Interpretation for Fracture and Adhesion,Journal of Applied Polymer Science, 13 (1969) 29–40.Google Scholar
  12. [12]
    W. B. Jones,A Simple Test for Certain Cases of Adhesion, UTEC DO 69–088, College of Engineering, University of Utah, Salt Lake City, Utah, 1969.Google Scholar
  13. [13]
    G. P. Anderson, V. L. Ruggles and G. S. Stibor,International Journal of Fracture Mechanics, 7, 1 (1971) 63.Google Scholar
  14. [14]
    M. L. Williams, The Fracture Threshold for an Adhesive Interlayer,Journal of Applied Polymer Science, 14 (1970) 1121.Google Scholar
  15. [15]
    J. D. Burton, W. B. Jones and M. L. Williams, Theoretical and Experimental Treatment of Fracture in an Adhesive Interlayer,Proceedings of the Society of Rheology, Pasadena, California, February 2–4, 1970.Google Scholar
  16. [16]
    M. L. Williams, Cohesive-Adhesive Fracture in a Pressurized Double Blister, To be published in theJournal of Adhesion, UTEC DO 71-037, February 1971.Google Scholar
  17. [17]
    S. J. Bennett, G. P. Anderson and M. L. Williams, The Time Dependence of Surface Energy in Cohesive Fracture,Journal of Applied Polymer Science, 14 (1970) 735.Google Scholar
  18. [18]
    M. D. Chang, K. L. DeVries and M. L. Williams, Fracture Mechanics Analysis of Adhesive Failure in a Single Lap Shear Joint, Presented atthe 1972 Society of Experimental Stress Analysis Meeting, Cleveland, Ohio, May 23–26, 1972 (UTEC DO 72-032).Google Scholar
  19. [19]
    M. L. Williams and K. L. DeVries, Engineering Evaluation of Dental Materials,Progress Report for National Institutes of Health, Grant No. 71-2022 (UTEC DO 71-168), See also An Abstract of Progress on Engineering Evaluation of Dental Adhesives, Contract No. NIH 71-2022, National Institutes of Health (UTEC DO 72-031).Google Scholar
  20. [20]
    G. P. Anderson, Measurement of Specific Adhesive Fracture Energy by Torsional Loading of Circular Cross-Sections,UTEC DO 72-140, August 1972.Google Scholar
  21. [21]
    M. D. Chang, K. L. DeVries and M. L. Williams, The Effect of Plasticity in Adhesive Fracture,Symposium on Adhesion, American Chemical Society Meeting, Washington, D.C., 1971 (to be published in the proceedings).Google Scholar
  22. [22]
    M. L. Williams, Relation of Continuum Mechanics to Adhesive Fracture,Journal of Adhesion, 3 (1972) 1–25.Google Scholar
  23. [23]
    M. L. Williams, Applications of Continuum Mechanics in Adhesive Fracture,Presented at Sixth Southeastern Conference on Theoretical and Applied Mechanics, Tampa, Florida, March 23–24, 1972 (UTEC DO 71-030E).Google Scholar
  24. [24]
    R. R. Despain, K. L. DeVries, R. D. Luntz and M. L. Williams, A Strength Comparison of Barnacle and Commercial Dental Cements, Presented at theInternation Association for Dental Research 49th General Meeting, December 1970 (UTEC DO 70-195).Google Scholar
  25. [25]
    K. L. DeVries, R. D. Luntz and M. L. Williams, A Method of Testing the Quality of Explosively Welded Metals, Presented at theThird International Conference of the Center of High-Energy Forming, Vail, Colorado, July 12–16, 1971 (UTEC DO 71-013).Google Scholar
  26. [26]
    M. L. Williams, R. D. Luntz, K. L. DeVries and R. R. Despain, A Technique for Evaluating Dental Adhesives, Presented at theInternational Association for Dental Research 49th General Meeting, December 1970 (UTEC DO 70-196).Google Scholar
  27. [27]
    T. Kunio and M. L. Williams, An Analysis of Adhesive Debonding in Case-Bonded Solid Propellant Rocket Motors,Proceedings of the International Symposium on Science and Technology of Space, Tokyo, Japan, August 1969.Google Scholar
  28. [28]
    M. L. Williams and F. N. Kelley, The Interaction Between Polymeric Structure, Deformation, and Fracture,Polymer Networks: Structural and Mechanical Properties, A. J. Chompff, ed. New York: Plenum Press, 193–218, 1971.Google Scholar

Copyright information

© Noordhoff International Publishing 1974

Authors and Affiliations

  • S. J. Bennett
    • 1
  • K. L. Devries
    • 1
  • M. L. Williams
    • 1
  1. 1.Department of Mechanical Engineering, College of EngineeringUniversity of Utah

Personalised recommendations