Radiation processes in hydroxyl-containing single crystals of magnesium oxide

  • V. I. Spitsyn
  • L. I. Barsova
  • I. I. Zyazyulya
  • T. K. Yurik
Inorganic Chemistry
  • 23 Downloads

Conclusions

  1. 1.

    Thermal and radiational processes in single crystals of magnesium oxide with varying concentrations of OH ion impurities and cationic impurities were studied by IR and EPR spectroscopy.

     
  2. 2.

    The protons of the Mg(OH)2 microphase were thermally the most mobile in hydroxyl-containing single crystals of MgO. The reciprocal redistribution of protons between the microphase and interstices began at 400°K. The region of migration of cationic vacancies (700–900°K) was another region of proton mobility.

     
  3. 3.

    Radiational processes in hydroxyl-containing single crystals of MgO can be divided into three successive stages: A VOH center is formed with small absorbed doses, and diffusion of a proton from the VOH center with formation of a V(OH)2 center and interstitial protons is observed on further irradiation. With doses above 100 Mrad, the Mg(OH)2 microphase is formed due to the V(OH)2 center and Hi+. The direction and rate of the processes of hydrogen redistribution are a function of the concentration of cationic impurities, the concentration of OH ions, the dose absorbed, and the irradiation temperature.

     

Keywords

Oxide Hydrogen Radiation Spectroscopy Migration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Y. Chen, M. M. Abraham, and H. T. Tohver, Phys. Rev. Lett.,36, 1757 (1976).Google Scholar
  2. 2.
    Y. Chen, M. M. Abraham, and L. C. Templeton, J. Am. Ceram. Soc.,60, 101 (1977).Google Scholar
  3. 3.
    P. Kirklin, P. Auzins, and J. E. Wertz, J. Phys. Chem. Solids,26, 1067 (1965).Google Scholar
  4. 4.
    D. L. Dexter, in: Solid State Physics, F. Seitz and D. Turnbull (eds.), Academic Press, New York (1958), p. 370.Google Scholar
  5. 5.
    O. W. Johnson, J. De Ford, and J. W. Shaner, J. Appl. Phys.,44, 3008 (1973).Google Scholar
  6. 6.
    E. N. Voronkova, B. N. Grechushnikov, G. I. Distler, and I. P. Petrov, Optical Materials for Infrared Technicians [in Russian], Nauka, Moscow (1965), p. 157.Google Scholar
  7. 7.
    V. S. Mironov, L. I. Barsova, and T. K. Yurik, Izv. Akad. Nauk SSSR, Ser. Khim., 2130 (1983).Google Scholar
  8. 8.
    H. A. Benesi, J. Chem. Phys.,30, 852 (1959).Google Scholar
  9. 9.
    A. Briggs and D. H. Bowen, in: Mass Transport in Oxides, J. B. Wachtman and A. D, Franklin (eds.), National Bureau of Standards (1968), p. 103.Google Scholar
  10. 10.
    F. Freund and H. J. Wengeler, J. Phys. and Chem. Solids,43, 132 (1982).Google Scholar
  11. 11.
    Y. Chen, M. M. Abraham, L. C. Templeton, and W. P. Unruh, Phys. Rev.B11, No. 2, 881 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. I. Spitsyn
    • 1
  • L. I. Barsova
    • 1
  • I. I. Zyazyulya
    • 1
  • T. K. Yurik
    • 1
  1. 1.Institute of Physical ChemistryAcademy of Sciences of the USSRMoscow

Personalised recommendations