Advertisement

Theoretical analysis of cross electron transfer reactions between complex ions Communication 3. Complexes with mono- and bidentate ligands

  • É. D. German
Physical Chemistry
  • 21 Downloads

Conclusions

Calculations of the rate constants and activation enthalpies of a group of cross electron transfer reactions between aqua, hexammine, and bipyridyl, phenanthroline complexes of metals were performed within the framework of the quantum mechanical theory of the kinetics of chemical reactions. The values of the transmission coefficients were found based on a comparison with the experimental values, and the nature of the changes in these coefficients in the redox systems examined was discussed. The validity of the mean geometric approximation of matrix element L12 of cross redox systems in terms of the values of Lii for the corresponding symmetrical reactions was investigated.

Keywords

Enthalpy Matrix Element Theoretical Analysis Aqua Transfer Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    É. D. German, Izv. Akad. Nauk SSSR, Ser. Khim., 1792 (1983).Google Scholar
  2. 2.
    É. D. German, Izv. Akad. Nauk SSSR, Ser. Khim., 1967 (1983).Google Scholar
  3. 3.
    R. Davis, M. Green, and A. G. Sykes, J. Chem. Soc. Dalton Trans., 1171 (1972).Google Scholar
  4. 4.
    T. J. Przystas and N. Sutin, J. Am. Chem. Soc.,95, 5545 (1973).Google Scholar
  5. 5.
    M. Chou, C. Creutz, and N. Sutin, J. Am. Chem. Soc.,99, 5615 (1977).Google Scholar
  6. 6.
    W. Böttcher, G. M. Brown, and N. Sutin, Inorg. Chem.,18, 1447 (1979).Google Scholar
  7. 7.
    N. Sutin and A. Forman, J. Am. Chem. Soc.,93, 5274 (1971).Google Scholar
  8. 8.
    N. Sutin and B. M. Gordon, J. Am. Chem. Soc.,83, 70 (1961).Google Scholar
  9. 9.
    M. N. Ford-Smith and N. Sutin, J. Am. Chem. Soc.,83, 1830 (1961).Google Scholar
  10. 10.
    J. Braddock and T. J. Meyer, J. Am. Chem. Soc.,95, 3158 (1973).Google Scholar
  11. 11.
    R. S. Young, F. R. Keene, and T. J. Meyer, J. Am. Chem. Soc.,99, 2468 (1977).Google Scholar
  12. 12.
    A. Zwickel and H. Taube, Disc. Faraday Soc.,29, 42 (1960).Google Scholar
  13. 13.
    Y. Narusawa, M. Kimura, and K. Nakano, J. Chem. Soc.,47, 2017 (1974).Google Scholar
  14. 14.
    N. Serpone, M. A. Jamleson, S. S. Emmi, P. J. Fuochi, Q. Mullazani, and M. Z. Huffman, J. Am. Chem. Soc.,103, 1091 (1981).Google Scholar
  15. 15.
    J. P. Candlin, J. Halpern, and D. L. Trimm, J. Am. Chem. Soc.,86, 1019 (1964).Google Scholar
  16. 16.
    B. M. Gordon, L. L. Williams, and N. Sutin, J. Am. Chem. Soc.,83, 2061 (1961).Google Scholar
  17. 17.
    É. D. German and A. M. Kuznetsov, Scientific and Technical Results [in Russian], Ser. Kinet. Katal.,10, 115 (1982).Google Scholar
  18. 18.
    N. Sutin, Accounts Chem. Res.,15, 272 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • É. D. German
    • 1
  1. 1.Institute of ElectrochemistryAcademy of Sciences of the USSRUSSR

Personalised recommendations