Wake flow past a plate with spoiler II: Gravity effects

  • Piero Bassanini
  • Daniela Mansutti
Original Papers


The effects of transverse gravity on steady flow past a split plate are investigated, by adopting the wake model proposed in the preceding paper (I). The existence and uniqueness of the solution as well as the convergence of an iteration process involving the free streamlines are proved for large Froude numbers by means of the Banach contraction mapping principle using Lipschitz norms.


Mathematical Method Steady Flow Froude Number Iteration Process Contraction Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Si studiano gli effetti dovuti ad un campo di gravità uniforme trasversale sul flusso con scia attorno ad un profilo sottile con spoiler usando un modello proposto nel precedente lavoro (I). Si dimostra l'esistenza, unicità, e la convergenza di un procedimento iterativo sulle linee di corrente libere, per grandi numeri di Froude, mediante il principio di contrazione in spazi di Banach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Bassanini,Wake flow past a plate with spoiler. Z. angew. Math. Phys.55, 658–670 (1984).Google Scholar
  2. [2]
    A. R. Elcrat and W. H. Wentz, Jr.,Forces on a split plate (airfoil with spoiler) obtained by conformai mapping of the hodograph, submitted to J. Fluid Mechanics.Google Scholar
  3. [3]
    A. R. Elcrat,Separated flow past aplate with spoiler. SIAM J. Math. Anal.13, 632–639 (1982).Google Scholar
  4. [4]
    A. R. Elcrat and L. N. Trefethen,Classical free-streamline flow over a polygonal obstacle, to appear on J. Computational and Appl. Math.Google Scholar
  5. [5]
    L. N. Trefethen,Analysis and design of polygonal resistors by conformal mapping. ZAMP (to appear).Google Scholar
  6. [6]
    G. Birkhoff and E. H. Zarantonello,Jets, Wakes, and Cavities. Academic Press, New York 1957.Google Scholar
  7. [7]
    V. N. Monakhov,Boundary Value Problems with Free Boundaries for Elliptic Systems of Equations. Amer. Math. Soc., Providence, R. I. 1983.Google Scholar
  8. [8]
    H. K. Cheng and N. Rott,Generalizations of the inversion formula of thin airfoil theory. J. Rat. Mech. Anal.3, 357–382 (1954).Google Scholar
  9. [9]
    R. A. Adams,Sobolev Spaces. Academic Press, New York 1975.Google Scholar
  10. [10]
    B. E. Larock and R. L. Street,A nonlinear theory for fully cavitating hydrofoil in a transverse gravity field. J. Fluid Mech.29, 317–336 (1967).Google Scholar
  11. [11]
    J. M. Ortega and W. C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York 1970.Google Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • Piero Bassanini
    • 1
  • Daniela Mansutti
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma IItaly
  2. 2.Istituto per le Applicazioni del CalcoloRomaItaly

Personalised recommendations