On the stochastic stability of systems with discrete parameters and arbitrary circulatory forces

  • J. Teichmann
Brief Reports


The stochastic stability of linear dynamic systems with finite dimensions and arbitrary non-conservative circulatory forces is studied by the direct Liapunov method. Sufficient conditions for stability in probability are given for three stochastic models.


Dynamic System Mathematical Method Stochastic Model Finite Dimension Discrete Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die stochastische Stabilität endlich-dimensionaler, linearer, dynamischer Systeme mit beliebigen nicht konservativen zirkulatorischen Kräften wird mit Hilfe der direkten Liapunovschen Methode untersucht. Hinreichende Bedingungen für Stabilität in Wahrscheinlichkeit werden für drei stochastische Modelle gegeben.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. L. Mignori,A stability theorem for mechanical systems with constraint damping. J. Appl. Mech. Trans. ASME37, 253 (1970).Google Scholar
  2. [2]
    P. C. Müller,Stabilität und Matrizen, Springer, Berlin (1977).Google Scholar
  3. [3]
    J. Teichmann,A stability theorem for systems with discrete parameters and arbitrary circulatory forces. Z. angew. Math. Phys.30, 1027 (1979).Google Scholar
  4. [4]
    L. Arnold,Stochastische Differentialgleichungen, Oldenbourg, München (1973).Google Scholar
  5. [5]
    K. Itô,On stochastic differential equations, Memoirs, Amer. Math. Soc.4 (1951).Google Scholar
  6. [6]
    H. J. Kushner,Stochastic stability and control, Academic Press, New York (1967).Google Scholar
  7. [7]
    F. Kozin,A survey of stability of stochastic systems, Automatica,5, 15 (1969).Google Scholar
  8. [8]
    E. Wong and M. Zakai,On the relation between ordinary and stochastic differential equations, Int. J. Engng. Sci.3, 213 (1965).Google Scholar
  9. [9]
    K. I. Itô and S. Watanabe,Introduction to stochastic differential equations, Proc. of Intern. Symp. SDE, Kyoto (1976).Google Scholar
  10. [10]
    E. J. McShane,Stochastic calculus and stochastic models, Academic Press, New York (1974).Google Scholar
  11. [11]
    J. Teichmann,Stochastic stability of MHD equilibria, Phys. Letters,72A, 117 (1979).Google Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • J. Teichmann
    • 1
  1. 1.Départment de PhysiqueUniversité de MontréalMontréalCanada

Personalised recommendations