Relation between activity and selectivity in electrophilic substituents in five-membered heteroaromatic compounds. 3. Electronic effects of substituents

  • L. G. Gorb
  • I. M. Morozova
  • L. I. Belen'kii
  • I. A. Abronin
Physical Chemistry


  1. 1.

    By the semiempirical SCF MO LCAO method in a CNDO/2 valence approximation we have carried out calculations for a series of monosubstituted benzenes, pyrroles, furans, and thiophenes and their C-protonated forms.

  2. 2.

    On the basis of a correlation of theoretical and experimental reactivity indexes, we have drawn some conclusions about the different transfer of substituent electron effects to theα- andβ-positions of five-membered heteroaromatic rings.

  3. 3.

    We have shown that orbital interaction calculations are necessary to explain the selectivity of the electrophilic reactions of the five-membered heterocycles.



Pyrrole Thiophene Electrophilic Reaction Heteroaromatic Compound Monosubstituted Benzene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. A. Abronin, L. I. Belen'kii, G. M. Zhidomirov, and Ya. L. Gol'dfarb, Zh. Org. Khim.,27, 1134 (1981).Google Scholar
  2. 2.
    C. D. Johnson, The Hammett Equation, Cambridge Univ. Press (1973).Google Scholar
  3. 3.
    G. Marino, Adv. Heterocycl. Chem.,13, 235 (1971).Google Scholar
  4. 4.
    A. Z. Dzhumanazarova, Dissertation, Moscow (1982).Google Scholar
  5. 5.
    J. A. Popl, D. P. Santry, and G. A. Segal, J. Chem. Phys.,43, 5139 (1965).Google Scholar
  6. 6.
    I. M. McKelvey, S. Aleksandratos, A. Streitwieser, L. M. Abbond, and W. J. Henre, J. Am. Chem. Soc.,98, 244 (1976).Google Scholar
  7. 7.
    D. A. Santry and G. A. Segal, J. Chem. Phys.,47, 158 (1967).Google Scholar
  8. 8.
    A. J. Gordon and R. A. Ford, Chemist's Companion, Wiley (1972).Google Scholar
  9. 9.
    I. A. Abronin, L. I. Belenkii, and Ya. L. Goldfarb, in: New Trends in Heterocyclic Chemistry, Amsterdam (1979), p. 154.Google Scholar
  10. 10.
    E. L. Mackor, A. Hobza, Van der Waals [sic], Trans. Faraday Soc.,54, 186 (1958).Google Scholar
  11. 11.
    O. Tomassik and C. D. Jonson, Adv. Heterocycl. Chem.,20, 1 (1976).Google Scholar
  12. 12.
    I. A. Abronin, and G. M. Zhidomirov, and Ya. L. Gol'dfarb, Dokl. Akad. Nauk SSSR,218, 63 (1974).Google Scholar
  13. 13.
    L. I. Belen'kii, Khim. Geterotsikl. Soedin., 1587 (1980).Google Scholar
  14. 14.
    A. I. D'yachenko, A. I. Ioffe, V. I. Faustov, and O. M. Nefedov, Izv. Akad. Nauk SSR, Ser. Khim., 2394 (1979).Google Scholar
  15. 15.
    V. A. Koptyug, A. N. Detsina, and O. V. Rogozhnikova, Izv. Akad. Nauk SSSR, Ser. Khim., 1297 (1981).Google Scholar
  16. 16.
    G. N. Szabo and M. R. Peterson, J. Mol. Struct.85, 249 (1981).Google Scholar
  17. 17.
    L. I. Belen'kii and I. A. Abronin, Zh. Org. Khim.,27, 1129 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • L. G. Gorb
    • 1
  • I. M. Morozova
    • 1
  • L. I. Belen'kii
    • 1
  • I. A. Abronin
    • 1
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRMoscow

Personalised recommendations