Radiation chemical oxidation of adamantylideneadamantane with the formation of a dioxetane

  • G. L. Sharipov
  • A. I. Voloshin
  • B. M. Lerman
  • V. P. Kazakov
  • G. A. Tolstikov
Physical Chemistry
  • 20 Downloads

Conclusions

  1. 1.

    The corresponding radical-cation is not formed in the radiolysis of dilute solutions of adamantylideneadamantane in toluene, acetone, and CH2Cl2. The major channel for the radiation chemical oxidation of this olefin is radical epoxidation. One of the sources of radical generation in acetone is the quenching of triplet acetone by oxygen.

     
  2. 2.

    1O2 is formed and the olefin is oxidized to the dioxetane in the presence of excitation transfer carriers to dissolved oxygen in solvents with a high yield for the generation of excited states. The epoxide yield is reduced in this case and the ratio of the yields of the dioxetane and epoxide is a function of the competition between reactions with 02 and the carriers leading to1O2 or radical products.

     

Keywords

Oxidation Oxygen Radiation Acetone Toluene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. L. Clennan, W. Simon, and C. W. Almgren, J. Am. Chem. Soc.,103, 2098 (1981).Google Scholar
  2. 2.
    G. B. Schuster, N. J. Turro, H.-C. Steinmetzer, et al., J. Am. Chem. Soc.,95, 7110 (1975).Google Scholar
  3. 3.
    C. W. Jefford and A. F. Boschung, Helv. Chim. Acta,60, 2673 (1977).Google Scholar
  4. 4.
    V. V. Shereshovets, G. L. Sharipov, N. N. Kabal'nova, et al., Zh. Org. Khim.,22, 2549 (1986).Google Scholar
  5. 5.
    A. K. Pikaev, Modern Radiation Chemistry. The Radiolysis of Gases and Liquids [in Russian], Nauka, Moscow (1986).Google Scholar
  6. 6.
    H. W. Geluk, Synthesis, 672 (1970).Google Scholar
  7. 7.
    G. A. Tolstikov, G. L. Sharipov, A. I. Voloshin, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 787 (1986).Google Scholar
  8. 8.
    G. L. Sharipov and V. P. Kazakov, Opt. Spektrosk.,48, 69 (1980).Google Scholar
  9. 9.
    G. L. Sharipov, A. I. Voloshin, V. S. Gumerova, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 1448 (1983).Google Scholar
  10. 10.
    L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat'ev, et al., Chemical Bond Dissociation Energies, Ionization Potentials, and Electron Affinities [in Russian], Nauka, Moscow (1974).Google Scholar
  11. 11.
    P. D. Mollere, K. N. Houk, D. C. Bomse, and T. N. Morton, J. Am. Chem. Soc.,98, 4732 (1976).Google Scholar
  12. 12.
    A. A. Gorman, G. Lovering, and M. A. J. Rodgers, J. Am. Chem,. Soc.,100, 4527 (1978).Google Scholar
  13. 13.
    N. J. Turro, M.-F. Chow, S. Kaufer, and M. Jacobs, Tetrahedron Lett.,22, 3 (1987).Google Scholar
  14. 14.
    A. P. Schaap, S. G. Recher, G. R. Faler, and S. R. Villasenor, J. Am. Chem. Soc.,105, 1691 (1983).Google Scholar
  15. 15.
    S. S. Ostakhov, G. L. Sharipov, A. I. Voloshin, et al., Dokl. Akad. Nauk SSSR,286, 1165 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • G. L. Sharipov
    • 1
  • A. I. Voloshin
    • 1
  • B. M. Lerman
    • 1
  • V. P. Kazakov
    • 1
  • G. A. Tolstikov
    • 1
  1. 1.Institute of Chemistry, Bashkir Science Center, Urals BranchAcademy of Sciences of the USSRUfa

Personalised recommendations