Quantum-chemical and molecular-mechanic calculation of the structure of saturated acyclic hydrocarbons

  • A. I. Ioffe
  • V. A. Svyatkin
  • O. M. Nefedov
Physical Chemistry
  • 35 Downloads

Conclusions

  1. 1.

    The geometric structure and thermochemistry of linear and branched saturated acyclic hydrocarbons are accurately described with the aid of molecular mechanics in the MM/2 parametrization, while the semiempirical quantum-chemical methods are less effective.

     
  2. 2.

    For the calculation of the electronic structure of saturated acyclic hydrocarbons it is most expedient to use semiempirical quantum-chemical methods with the values of the geometric parameters optimized in the framework of the MM/2 method.

     

Keywords

Hydrocarbon Molecular Mechanic Geometric Parameter Geometric Structure Acyclic Hydrocarbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. V. Vilkov, V. S. Mastryukov, and N. I. Sadova, Determination of the Geometric Structure of Free Molecules [in Russian], Khimiya, Leningrad (1978).Google Scholar
  2. 2.
    L. H. Hall and L. B. Kier, Tetrahedron,33, 1953 (1977).Google Scholar
  3. 3.
    J. N. Scarsdale, C. van Alsenoy, and L. Schäfer, J. Mol. Struct.,86, 277 (1982).Google Scholar
  4. 4.
    K. B. Wiberg, J. Am. Chem. Soc.,105, 1227 (1983).Google Scholar
  5. 5.
    J. L. Bredas, M. Dufey, J. G. Fripiat, and J. M. Andre, Mol. Phys.,49, 1451 (1983).Google Scholar
  6. 6.
    J. M. Schulman and R. L. Disch, J. Am. Chem. Soc.,106, 1203 (1984).Google Scholar
  7. 7.
    T. Clark and M. A. McKervey, in: J. F. Stoddart (editor), Comprehensive Organic Chemistry, Vol. 1, Pergamon Press, Oxford (1979), pp. 37–120.Google Scholar
  8. 8.
    K. Burkhart and N. L. Allinger, Molecular Mechanics, American Chemical Society, Washington (1982).Google Scholar
  9. 9.
    N. L. Allinger, J. Am, Chem. Soc.,99, 8127 (1977).Google Scholar
  10. 10.
    J. N. Scarsdale, J. Comput. Chem.,3, 269 (1982).Google Scholar
  11. 11.
    R. J. Boyd and M. A. Whitehead, J. Chem. Soc. Dalton Trans. I 173 (1972).Google Scholar
  12. 12.
    N. Bodor, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc.,94, 5303 (1972).Google Scholar
  13. 13.
    R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc.,97, 1285, 1294 (1975).Google Scholar
  14. 14.
    N. L. Allinger and Y. H. Yuh, QCPE Journal,13, 395 (1982).Google Scholar
  15. 15.
    H. Fischer, H. Kollmar, Theor. Chim. Acta,16, 163 (1970).Google Scholar
  16. 16.
    C. Rüchardt and H.-D. Beckhaus. Angew. Chem.,92, 417 (1980).Google Scholar
  17. 17.
    F. A. Van Catledge and N. L. Allinger, J. Am. Chem. Soc.,104, 6272 (1982).Google Scholar
  18. 18.
    J. B. Pedley and J. Rylance, Computer-Analyzed Thermochemical Data: Organic and Organometallic Compounds, Univ. of Sussex (1977).Google Scholar
  19. 19.
    R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, J. Phys. Chem.,88, 334 (1984).Google Scholar
  20. 20.
    L. V. Gurvich, Bond Energies, Ionization Potentials, and Electron Affinity [in Russian], Nauka, Moscow (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • A. I. Ioffe
    • 1
  • V. A. Svyatkin
    • 1
  • O. M. Nefedov
    • 1
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRMoscow

Personalised recommendations