Advertisement

Kinetics of formation and thermal decomposition of 1,1-diethoxyethane hydrotrioxide

  • V. V. Shereshovets
  • F. A. Galieva
  • N. N. Kabal'nova
  • N. M. Shishlov
  • R. A. Sadykov
  • V. D. Kommissarov
  • G. A. Tolstikov
Physical Chemistry

Conclusions

  1. 1.

    The dependence of the yield of hydrotrioxide during the ozonation of 1,1-diethoxy-ethane on temperature and degree of conversion shows that when the process has progressed to a great extent, ozone enters into reaction with the hydrotrioxide.

     
  2. 2.

    The thermal decomposition of 1,1-diethoxyethane hydrotrioxide proceeds mainly by a nonradical mechanism; the fraction of radical decomopsition, measured by the acceptors method, is 1.2%.

     
  3. 3.

    The first discovery was made of the fact that the thermal decomposition of acetal hydrotrioxides is accompanied by chemiluminescence in the IR region.

     

Keywords

Acetal Ozonation Thermal Decomposition Acceptor Method Nonradical Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    P. Deslongchamps and C. Moreau, Can. J. Chem.,49, 2465 (1971).Google Scholar
  2. 2.
    R. J. Taillefer, S. E. Thomas, Y. Nadean, S. Fliszar, and H. Henry, Can, J. Chem.,58, 1138 (1980).Google Scholar
  3. 3.
    F. Kovac and B. Plesnicar, J. Chem. Soc., Chem. Commun., 122 (1978).Google Scholar
  4. 4.
    F. Kovac and B. Plesnicar, J. Am. Chem. Soc.,101, 2677 (1979).Google Scholar
  5. 5.
    V. V. Shereshovets, V. D. Komissarov, and E. T. Denisov, Izv. Akad. Nauk SSSR, Ser. Khim., 2482 (1978).Google Scholar
  6. 6.
    N. Ya. Shafikov; R. A. Sadykov, V. V. Sheroshovets, A. A. Panasenko, and V. D. Komissarov, Izv. Akad. Nauk SSSR, Ser. Khim., 1923 (1981).Google Scholar
  7. 7.
    V. V. Sheroshovets, V. D. Komissarov, S. I. Maslennikov, and N. N. Kabal'nova, Izv. Akad. Nauk SSSR, Ser. Khim., 2631 (1982).Google Scholar
  8. 8.
    V. Ya. Shlyapintokh, O. N. Karpukhin, L. M. Postnikov, I. V. Zakharov, A. A. Vichutinskii, and V. F. Tsepalov, Chemiluminescent Methods of Study of Slow Chemical Processes [in Russian], Nauka, Moscow (1966), p. 34.Google Scholar
  9. 9.
    K. Meyer and H. Cottlief-Billroth, Ber.,52, 1476 (1919).Google Scholar
  10. 10.
    J. C. Stowell, J. Org. Chem.,36, 3055 (1971).Google Scholar
  11. 11.
    A. Weissberger et al. (eds.) Techniques of Organic Chemistry, Vol. 7, Organic Solvents, Wiley (1955).Google Scholar
  12. 12.
    J. Barltrop and J. D. Coyle, Excited States in Organic Chemistry [Russian translation], Mir, Moscow (1979).Google Scholar
  13. 13.
    A. A. Krasnovskii, Zh. Prikl. Khim.,32, 852 (1980).Google Scholar
  14. 14.
    P. S. Nangia and S. W. Benson, J. Phys. Chem.,83, 1138 (1979).Google Scholar
  15. 15.
    P. S. Nangia and S. W. Benson, J. Am. Chem. Soc.,102, 3105 (1980).Google Scholar
  16. 16.
    W. A. Pryor, N. Onto, and D. F. Church, J. Am. Chem. Soc.,104, 5813 (1982).Google Scholar
  17. 17.
    V. E. Zubarev, V. N. Belevskii, and L. T. Bugaenko, Usp. Khim.,48, 1361 (1979).Google Scholar
  18. 18.
    J. J. Brownlie and K. U. Ingold, Can. J. Chem.,45, 2427 (1967).Google Scholar
  19. 19.
    B. É. Krisyuk, A. A. Popov, A. P. Griva, and E. T. Denisov, Dokl. Akad. Nauk SSSR,269, 400 (1983).Google Scholar
  20. 20.
    F. E. Stary, D. E. Emge, and R. W. Murray, J. Am. Chem. Soc.,98, 1880 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • V. V. Shereshovets
    • 1
  • F. A. Galieva
    • 1
  • N. N. Kabal'nova
    • 1
  • N. M. Shishlov
    • 1
  • R. A. Sadykov
    • 1
  • V. D. Kommissarov
    • 1
  • G. A. Tolstikov
    • 1
  1. 1.Institute of Chemistry, Bashkir BranchAcademy of Sciences of the USSRUfa

Personalised recommendations