Advertisement

Quantum-chemical investigation of the electronic structure of chlorocyclopropanes and hydrogenolysis of C-Cl bonds in gem-dichlorocyclopropanes

  • V. L. Lebedev
  • L. A. Perminova
  • I. A. Abronin
  • S. P. Chernykh
  • A. M. Taber
  • I. V. Kalechits
Physical Chemistry
  • 22 Downloads

Conclusions

The electronic structure of cyclopropane, chloro- and gem-dichlorocyclopropane, and a number of their derivatives has been investigated by the CNDO/2 method. A nucleophilic mechanism for the hydrogenolysis of the C-Cl bonds in chlorocyclopropanes has been proposed on the basis of the results. The influence of the substituents in the cyclopropane ring on the course of the reaction has been investigated, and correlations between the charges on the atoms and the Hammett constants for the substituents have been obtained and discussed.

Keywords

Chloro Cyclopropane Cyclopropane Ring Hammett Constant Nucleophilic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    O. M. Nefedov, N. N. Novitskaya, and A. D. Petrov, Dokl. Akad. Nauk SSSR,152, 629 (1963); O. M. Nefedov, R. N. Shafran, and N. N. Novitskaya, Zh. Org. Khim.,8, 2075 (1972).Google Scholar
  2. 2.
    A. I. D'yachenko, O. S. Korneeva, and O. M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., 2842 (1980).Google Scholar
  3. 3.
    C. W. Jefford, D. Kirkpatrick, and F. Delay, J. Am. Chem. Soc.,94, 8905 (1972).Google Scholar
  4. 4.
    D. Seyforth, H. Yamazaki, and D. L. Alleston, J. Org. Chem.,28, 703 (1963).Google Scholar
  5. 5.
    R. Barlet and Y. Vo-Quang, Bull. Soc. Chim. France,10, 3729 (1960).Google Scholar
  6. 6.
    L. A. Pertinova, S. P. Chernykh, and A. M. Taber, “Catalytic hydrogenolysis of the carbon -chlorine bond in chlorine-containing organic compounds,” [in Russian], No. 11, VINITI, Moscow (1978).Google Scholar
  7. 7.
    J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).Google Scholar
  8. 8.
    L. E. Sutton (editor), Tables of Interatomic Distances and Configurations in Molecules and Ions, Chemical Society, London (1958).Google Scholar
  9. 9.
    V. S. Aksenov, G. A. Terent'eva, and Yu. V. Savinykh, Usp. Khim.,49, 1039 (1980).Google Scholar
  10. 10.
    O. V. Gritsenko, A. A. Bagatur'yants, I. I. Moiseev, V. B. Kazanskii, and I. V. Kalechits, Kinet. Katal.,21, 632 (1980).Google Scholar
  11. 11.
    H. Fischer and H. Kollmar, Theor. Chim. Acta,16, 213 (1969).Google Scholar
  12. 12.
    C. K. Ingold, Structure and Mechanism in Organic Chemistry, second edition, Cornell Univ. Press, Ithaca (1969).Google Scholar
  13. 13.
    M. Shanshal, Z. Naturforsch.,33a, 1069 (1978).Google Scholar
  14. 14.
    O. Yu. Okhlobystin, Electron Transfer in Organic Reactions [in Russian], Izd. Rostovsk.Univ. (1974).Google Scholar
  15. 15.
    Chemist's Handbook [in Russian], Vol. 3, Khimiya, Moscow-Leningrad (1964).Google Scholar
  16. 16.
    F. H. Allen, Acta Crystallogr.,B36, 81 (1980).Google Scholar
  17. 17.
    I. A. Abronin, L. I. Belen'kii, G. M. Zhidomirov, and Ya. L. Gol'dfarb, Zh. Org. Khim.,14, 1305 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • V. L. Lebedev
    • 1
    • 2
  • L. A. Perminova
    • 1
    • 2
  • I. A. Abronin
    • 1
    • 2
  • S. P. Chernykh
    • 1
    • 2
  • A. M. Taber
    • 1
    • 2
  • I. V. Kalechits
    • 1
    • 2
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRMoscow
  2. 2.All-Union Scientific-Research Institute of Organic SynthesisMoscow

Personalised recommendations