Wave splitting of the Timoshenko beam equation in the time domain

  • Peter Olsson
  • Gerhard Kristensson
Original Papers

Abstract

In recent years, wave splitting in conjunction with invariant imbedding and Green's function techniques has been applied with great success to a number of interesting inverse and direct scattering problems. The aim of the present paper is to derive a wave splitting for the Timoshenko equation, a fourth order PDE of importance in beam theory. An analysis of the hyperbolicity of the Timoshenko equation and its, in a sense, less physical relatives-the Euler-Bernoulli and the Rayleigh equations-is also provided.

Keywords

Mathematical Method Fourth Order Function Technique Great Success Beam Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Abramowitz and I. A. Stegun, eds,Handbook of Mathematical Functions. Applied Mathematics Series No. 55, National Bureau of Standards, Washington D.C. 1970.Google Scholar
  2. [2]
    A. Arosio, S. Panizzi, and M. G. Paoli,Inhomogeneous Timoshenko beam equations. Math. Methods Appl. Sci.,15, 621–630 (1992).Google Scholar
  3. [3]
    L. Brekhovskikh and V. Goncharov,Mechanics of Continua and Wave Dynamics. Springer-Verlag, Berlin/Heidelberg 1985.Google Scholar
  4. [4]
    J. Chazarain and A. Piriou,Introduction to the Theory of Linear Partial Differential Equations. North-Holland Publ. Co., Amsterdam 1982.Google Scholar
  5. [5]
    Y. Chen,Vibrations: Theoretical Methods. Addison-Wesley, Reading 1966.Google Scholar
  6. [6]
    J. P. Corones, G. Kristensson, P. Nelson, and D. L. Seth, eds,Invariant Imbedding and Inverse Problems. SIAM 1992.Google Scholar
  7. [7]
    H. Fan and G. E. O. Widera,Proper boundary conditions for a beam. J. Appl. Mech.,59, 915–922 (1992).Google Scholar
  8. [8]
    G. Kristensson,Transient electromagnetic wave propagation in wave guides. Technical Report LUTEDX/(TREAT-7026)/1-22/(1993), Lund Institute of Technology, Department of Electromagnetic Theory, P.O. Box 118, S-211 00 Lund, Sweden 1992.Google Scholar
  9. [9]
    Y. L. Luke,Integrals of Bessel Functions. McGraw-Hill, New York 1962.Google Scholar
  10. [10]
    L. Meirovitch,Analytical Methods in Vibrations. MacMillan, New York 1967.Google Scholar
  11. [11]
    P. Olsson and U. Stigh,On the determination of the constitutive properties of thin interphase layers-an exact inverse solution. Int. J. Fracture,41, R71-R76 (1989).Google Scholar
  12. [12]
    R. C. Rogers,Derivation of linear beam equations using nonlinear continuum mechanics. Z. angew. Math. Phys.,44, 732–754 (1993).Google Scholar
  13. [13]
    S. P. Timoshenko,On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil. Mag.,XLI, 744–746 (1921). Reprinted in theThe Collected Papers of Stephen P. Timoshenko, McGraw-Hill, London 1953.Google Scholar
  14. [14]
    S. P. Timoshenko,On the transverse vibrations of bars of uniform cross-sections. Phil. Mag.,43, 125–131 (1922).Google Scholar
  15. [15]
    C. R. Vogel,Wave splitting for some nonhyperbolic time-dependent pdes. In J. P. Corones, G. Kristensson, P. Nelson, and D. L. Seth, eds,Invariant Imbedding and Inverse Problems. SIAM 1992.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • Peter Olsson
    • 1
  • Gerhard Kristensson
    • 2
  1. 1.Div of MechanicsChalmers University of TechnologyGöteborg
  2. 2.Dept of Electromagnetic TheoryLund Institute of TechnologyLundSweden

Personalised recommendations