, Volume 161, Issue 1, pp 1–11 | Cite as

Periclinal penetration of potassium permanganate into mature cuticular membranes ofAgave andClivia leaves: new implications for plant cuticle development

  • Joachim Wattendorff
  • Peter J. Holloway


Staining cuticular membranes ofAgave americana andClivia miniata en bloc with potassium permanganate results in a strong contrast in the interior cuticular layer while the exterior part remains unstained. This is not caused by a selective chemical reaction with the interior part but by the unidirectional penetration of the reagent from the interior side, the outside being protected by the cuticle proper. In transverse cryosections of the cuticular membrane, permanganate penetrates nearly as easily into the exterior cuticular layer as into the interior one giving the same contrast. However, compared with the periclinal penetration into the cuticle proper this penetration is accelerated five-to tenfold by the polysaccharide network within the cuticular layer which serves as a distribution-channel system. Periclinal penetration into the cuticle proper occurs independently in each “cutin penetration unit” included between two obvious lucent lamellae and further divided into subunits.

Key words

Agave Clivia Cuticle development Cuticular membrane (ultrastructure) Cutin (polar) Cutin synthesis Periclinal penetration Polysaccharide network Potassium penetration Wax 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, E.A. (1982) Chemistry and morphology of plant epicuticular waxes. In: The plant cuticle, pp. 139–165, Cutler, D.F., Alvin, K.L., Price, C.E., eds. Academic Press, London New YorkGoogle Scholar
  2. Baker, E.A., Bukovac, M.J., Hunt, G.M. (1982) Compositic of tomato fruit cuticle as related to fruit growth and devel opment. In: The plant cuticle, pp. 33–44, Cutler, D.F., Alvin, K.L., Price, C.E., eds. Academic Press, London New YorkGoogle Scholar
  3. Eckl, K., Gruler, H. (1980) Phase transition in plant cuticles. Planta150, 102–113Google Scholar
  4. Fritz, F. (1935) Über die Kutikula vonAloë-undGasteriaarten. Jahrb. Wiss. Bot.81, 718–746Google Scholar
  5. Hoch, H.C. (1979) Penetration of chemicals into theMalus leaf cuticle. An ultrastructural analysis. Planta147, 186–195Google Scholar
  6. Holloway, P.J. (1982a) Structure and histochemistry of plant cuticular membranes: an overview. In: The plant cuticle, pp. 1–32, Cutler, D.F., Alvin, K.L., Price, C.E., eds. Academic Press, London New YorkGoogle Scholar
  7. Holloway, P.J. (1982b) The chemical constitution of plant cutins. In: The plant cuticle, pp. 45–85, Cutler, D.F., Alvin, K.L., Price, C.E., eds. Academic Press, London New YorkGoogle Scholar
  8. Mader, H. (1954) Untersuchungen an Korkmembranen. Planta43, 163–181Google Scholar
  9. Mérida, T., Schönherr, J., Schmidt, H.W. (1981) Fine structure of plant cuticles in relation to water permeability: the fine structure of the cuticle ofClivia miniata Reg. leaves. Planta152, 259–267Google Scholar
  10. Rodríguez-Miguens, B., Ribas-Marqués, I. (1972) Investigaciones quimicas sobre el corcho deSolanum tuberosum. L. (patata). An. R. Soc. Esp. Fis. Quim. Ser. B68, 303–308Google Scholar
  11. Roelofsen, P.A. (1952) On the submicroscopic structure of cuticular cell walls. Acta Bot. Neerl.1, 99–114Google Scholar
  12. Roelofsen, P.A. (1952) The plant cell-wall. In: Handbuch der Pflanzenanatomie, Band III, Teil 4, Zimmermann, W., Ozenda, P.G., eds. Gebrüder Borntraeger, BerlinGoogle Scholar
  13. Schmidt, H.W., Mérida, T., Schönherr, J. (1981) Water permeability and fine structure of cuticular membranes isolated enzymatically from leaves ofClivia miniata Reg. Z. Pflanzenphysiol.105, 41–51Google Scholar
  14. Schmidt, H.W., Schönherr, J. (1982a) Fine structure of isolated and non-isolated potato tuber periderm. Planta154, 76–80Google Scholar
  15. Schmidt, H.W., Schönherr, J. (1982b) Development of plant cuticles: occurrence and role of non-ester bonds in cutin ofClivia miniata Reg. leaves. Planta156, 380–384Google Scholar
  16. Schnepf, E. (1969) Sekretion and Exkretion bei Pflanzen. Protoplasmatologia8 (8), 1–181Google Scholar
  17. Schönherr, J. (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Encyclopedia of plant physiology, N.S., vol. 12B: Physiological plant ecology II. Water relations and carbon assimilation. pp. 153–179, Lange, O.L., Nobel, P., Osmond, C.B., Ziegler, H., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Sitte, P. (1955) Der Feinbau verkorkter Zellwände. Mikroskopie10, 178–200Google Scholar
  19. Sitte, P. (1975) Die Bedeutung der molekularen Lamellenbauweise von Korkzellwänden. Biochem. Physiol. Pflanz.168, 287–297Google Scholar
  20. Venable, J.H., Coggeshall, R. (1965) A simplified lead citrate stain for use in electron microscopy. J. Cell Biol.25, 407–408Google Scholar
  21. Wattendorff, J. (1974) The formation of cork cells in the periderm ofAcacia senegal Willd. and their ultrastructure during suberin deposition. Z. Pflanzenphysiol.72, 119–134Google Scholar
  22. Wattendorff, J. (1980) Cutinisierte und suberinisierte Zellwände: Schutzhüllen der höheren Pflanzen. Biol. uns. Zeit10, 81–90Google Scholar
  23. Wattendorff, J., Holloway, P.J. (1980) Studies on the ultrastructure and histochemistry of plant cuticles: the cuticular membrane ofAgave americana L. in situ. Ann. Bot. (London)46, 13–28Google Scholar
  24. Wattendorff, J., Holloway, P.J. (1982) Studies on the ultrastructure and histochemistry of plant cuticles: isolated cuticular membrane preparations ofAgave americana L. and the effects of various extraction procedures. Ann. Bot. (London)49, 769–804Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Joachim Wattendorff
    • 1
    • 2
  • Peter J. Holloway
    • 1
    • 2
  1. 1.Institut für Botanische Biologie der UniversitätFreiburgSwitzerland
  2. 2.Long Ashton Research StationUniversity of BristolBristolUK

Personalised recommendations