Hydrolysis and chemiluminescence of diazaquinones. Communication 3. Investigation of mechanism of chemiluminescence

  • B. A. Rusin
  • A. N. Leksin
Physical Chemistry


  1. 1.

    Possible mechanisms have been examined critically in the chemiluminescence generated by hydrolysis of diazaquinones in the presence of O2. The chemiluminescence has two kinetic stages, “fast” and “slow.” Attention has been concentrated mainly on the “slow” chemiluminescence, which is related to the principal channel of diazaquinone consumption in terms of mass consumed.

  2. 2.

    It has been shown that slow chemiluminescence is generated with the participation of phthalhydrazides formed in the process of diazaquinone hydrolysis. It is suggested that the slow chemiluminescence appears as a result of the interaction of acyl radicals with the phthalhydrazide.



Hydrolysis Acyl Radical Kinetic Stage Phthalhydrazide Principal Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. H. White, E. A. Nash, D. R. Roberts, and O. G. Zafiriou, J. Am. Chem. Soc.,90, 5932 (1968).Google Scholar
  2. 2.
    M. M. Rauhut, A. M. Semsel, and B. G. Roberts, J. Org. Chem.,31, 2431 (1966).Google Scholar
  3. 3.
    K.-D. Gundermann, H. Unger, and J. Stauff, J. Chem. Res. (S), p. 318 (1978).Google Scholar
  4. 4.
    K.-D. Gundermann, in: Chemiluminescence and Bioluminescence (Papers from International Conference, 1972), New York (1973), p. 209.Google Scholar
  5. 5.
    T. E. Eriksen, J. Lind, and G. Merenyi, J. Chem. Soc., Faraday Trans, 1,77, 2137 (1981).Google Scholar
  6. 6.
    B. A. Rusin and A. N. Leksin, Izv. Akad. Nauk SSSR, Ser. Khim., 2685 (1982).Google Scholar
  7. 7.
    B. A. Rusin, A. N. Leksin, A. S. Shalomeev, and M. P. Semenova-Zhukova, Izv. Akad. Nauk. SSSR, Ser. Khim., 305 (1984).Google Scholar
  8. 8.
    Y. Omote, T. Miyake, and N. Sugiyama, Bull. Chem. Soc. Jpn.,40, 2446 (1967).Google Scholar
  9. 9.
    I. B. Afanas'ev, Usp. Khim.,48, 977 (1979).Google Scholar
  10. 10.
    N. M. Émanuel, E. T. Denisov, and Z. K. Maizus, Liquid-Phase Oxidation of Hydrocarbons, Plenum Press, New York (1967).Google Scholar
  11. 11.
    J. Rabani, W. A. Mulac, and M. S. Matheson, J. Phys. Chem.,69, 53 (1965); V. M. Berdnikov, and O. S. Zhuravleva, Kinet. Katal.,14, 878 (1973).Google Scholar
  12. 12.
    J. H. Baxendale, J. Chem. Soc., Faraday Trans. 1,69, 1665 (1973).Google Scholar
  13. 13.
    E. T. Seo and T. Kiwana, Electroanal. Chem.,6, 417 (1963).Google Scholar
  14. 14.
    P. V. Shevlin and H. A. Neufeld, J. Org. Chem.,35, 2178 (1970).Google Scholar
  15. 15.
    G. Merenyi and J. S. Lind, J. Am. Chem. Soc.,102, 5830 (1980).Google Scholar
  16. 16.
    Ja-Young Koo and A. B. Schuster, J. Am. Chem. Soc.,100, 4496 (1978).Google Scholar
  17. 17.
    V. N. Emokhonov, A. L. Roshchin, and B. A. Rusin, Khim. Vys. Energ.,13, 278 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • B. A. Rusin
    • 1
  • A. N. Leksin
    • 1
  1. 1.Institute of Chemical PhysicsAcademy of Sciences of the USSRMoscow

Personalised recommendations