Advertisement

Electrochemical oxidation of aliphatic polynitro compounds. 3. Certain reactions of electrochemically generated trinitromethyl radicals

  • G. G. Pal'mbakh
  • V. A. Kokorekina
  • S. A. Shevelev
  • L. G. Feoktistov
  • A. A. Fainzil'berg
Physical Chemistry
  • 16 Downloads

Conclusions

  1. 1.

    Trinitromethyl radicals generated electrochemically on the Pt electrode are capable of detaching hydrogen atoms from substrates such as acetonitrile, toluene, benzyl chloride, cyclohexane, and diethyl ether; fragmentation of the TNM radical into inorganic compounds predominates when hydrogen detachment is either impossible or hindered.

     
  2. 2.

    Detachment of halogen atoms from halogen-containing organic substrates, and addition of the TNM radicals to diene and their recombination with intermediate alkyl radicals, all take place here, but only to a limited degree.

     

Keywords

Toluene Hydrogen Atom Diethyl Cyclohexane Benzyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Kokorekina, S. A. Shevelev, L. G. Feoktistov, and A. A. Fainzil'berg, Izv. Akad. Nauk SSSR, Ser. Khim., 1717 (1972).Google Scholar
  2. 2.
    V. A. Kokorekina, L. G. Feoktistov, S. A. Shevelev, and A. A. Fainzil'berg, Elektrokhimiya,6, 1849 (1970).Google Scholar
  3. 3.
    V. A. Kokorekina, O. P. Shitov, L. G. Feoktistov, S. L. Ioffe, V. A. Tartakovskii, and S. S. Novikov, Izv. Akad. Nauk SSSR, Ser. Khim., 2603 (1972).Google Scholar
  4. 4.
    A. Frank, M. Grätzel, and A. Henglein, Ber. Bunsenges. Phys. Chem.,80, 593 (1976).Google Scholar
  5. 5.
    Yu. A. Lebedev, E. A. Miroshnichenko, and Yu. K. Knobel', Thermochemistry of the Nitro Compounds [in Russian], Nauka (1970), p. 125.Google Scholar
  6. 6.
    Chemical Bond Rupture Energies. Ionization Potentials and Electron Affinities [in Russian], Nauka (1974).Google Scholar
  7. 7.
    V. I. Slovetskii, A. A. Fainzil'berg, G. Kh. Khisamutdinov, S. A. Shevelev, and V. I. Erashko, Zh. Org. Khim.,7, 422 (1971).Google Scholar
  8. 8.
    G. Becker, Introduction to the Electron Theory of Organic Reactions [Russian translation], Mir (1965), p. 531.Google Scholar
  9. 9.
    F. Borgardt, A. Seeler, and P. Noble, J. Org. Chem.,31, 2806 (1966).Google Scholar
  10. 10.
    C. Lagercrantz, S. Forshult, T. Nilsson, and K. Torsell, Acta Chem. Scand.,24, 550 (1970).Google Scholar
  11. 11.
    C. Plammer, USA Patent 2991315, Chem. Abstr.,56, 2330 (1962); USA Patent 3049570, Chem. Abstr.,57, 15404 (1962).Google Scholar
  12. 12.
    S. A. Shevelev, V. I. Erashko, and A. A. Fainzil'berg, Izv. Akad. Nauk SSSR, Ser. Khim., 2725 (1976).Google Scholar
  13. 13.
    V. I. Erashko, V. I. Slovetskii, S. A. Shevelev, and A. A. Fainzil'berg, Izv. Akad. Nauk SSSR, Ser. Khim., 720 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • G. G. Pal'mbakh
    • 1
  • V. A. Kokorekina
    • 1
  • S. A. Shevelev
    • 1
  • L. G. Feoktistov
    • 1
  • A. A. Fainzil'berg
    • 1
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRMoscow

Personalised recommendations