Nongraphitic structural elements in some polymers of carbon

  • V. M. Mel'nichenko
  • U. Sh. Gilyazov
  • V. S. Samoilov
  • Yu. N. Nikulin
  • A. M. Sladkov
Physical Chemistry
  • 19 Downloads

Conclusions

  1. 1.

    X-ray diffraction patterns of natural and heat-treated anthracites, graphites, pyrolytic carbon, schungite, and polyacetylene contain, besides graphitic reflections, a significant number of other, nongraphitic, reflections. A portion of them is caused by heteroatomic fragments and disappears upon heating, but other reflections, on the other hand, grow during heat treatment.

     
  2. 2.

    The basic mass of carbonaceous material in the original anthracites, polyacetylene, and schungite exists not in the form of graphitoid substances, but in the form of partially crosslinked, spatially branched carbon chains, containing, perhaps, secondary fragments.

     
  3. 3.

    During heating, the processes of aromatization and graphitation spread, and the lamellar structure is formed. In a parallel manner, crystalline fragments of nongraphitic nature are formed.

     
  4. 4.

    Upon heating, anthracites twice transform into the thermoplastic state.

     

Keywords

Reflection Graphite Heat Treatment Carbon Chain Lamellar Structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. Hoerni and J. Weigle, Nature,164, 1088 (1949).PubMedGoogle Scholar
  2. 2.
    R. E. Franklin, Proc. Roy. Soc.,A209, 196 (1951).Google Scholar
  3. 3.
    K. Usenbaev, Investigation of the Structure and Properties of Transitional Forms of Carbon [in Russian], Mektep, Frunze (1970), p. 76.Google Scholar
  4. 4.
    O. D. Rusanova and V. P. Aroskind, in: Theory and Practice of Preparation and Coking of Coals [in Russian], Metallurgiya, Moscow (1978), No. 7, p. 34.Google Scholar
  5. 5.
    M. D. Shapiro and L. S. Al'terman, in: Theory and Practice of Preparation and Coking of Coals [in Russian], Metallurgiya, Moscow (1977), No. 3, p. 17.Google Scholar
  6. 6.
    V. Ya. Posyl'nyi and L. A. Kralin, Thermographite [in Russian], Rostov. Knizh. Izd. (1973), p. 13.Google Scholar
  7. 7.
    V. Ya. Posyl'nyi, Khim. Tverd. Topliva, No. 3, 23 (1977).Google Scholar
  8. 8.
    N. C. Deno, K. W. Curry, A. D. Jones, K. R. Keegan, W. G. Rakitsky, C. A. Richter, and R. D. Minard, Fuel,60, 210 (1981).Google Scholar
  9. 9.
    G. M. Jenkins and K. Kawamura, Polymeric Carbons — Carbon Fibre, Glass and Char, Cambridge Univ. Press, London-New York (1976), Ch. 4, 3.Google Scholar
  10. 10.
    R. E. Franklin, Acta Crystallogr.,3, 107 (1950).Google Scholar
  11. 11.
    I. S. McLintock and J. C. Orr, in: Chemistry and Physics of Carbon, M. Dekker, New York (1973), Vol. 2, p. 243.Google Scholar
  12. 12.
    A. G. Whittaker and B. J. Tooper, J. Am. Ceram. Soc.,57, 443 (1974).Google Scholar
  13. 13.
    J. Kakinoki, Acta Crystallogr.,18, 578 (1965).Google Scholar
  14. 14.
    W. T. Eeles, Nature,188, 287 (1960).Google Scholar
  15. 15.
    V. G. Nagornyi, in: Constructional Materials Based on Carbon [in Russian], Metallurgiya, Moscow (1980), p. 32.Google Scholar
  16. 16.
    V. A. Litvinova and V. I. Kasatochkin, in: Structural Chemistry of Carbon and Coals [in Russian], Nauka, Moscow (1969), p. 46.Google Scholar
  17. 17.
    P. B. Hirsch, Proc. Roy. Soc. (London),A226, 143 (1954).Google Scholar
  18. 18.
    A. M. Sladkov, V. I. Kasatochkin, V. V. Korshak, and Yu. P. Kudryavtsev, Izv. Akad. Nauk SSSR, Ser. Khim., 2697 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • V. M. Mel'nichenko
    • 1
  • U. Sh. Gilyazov
    • 1
  • V. S. Samoilov
    • 1
  • Yu. N. Nikulin
    • 1
  • A. M. Sladkov
    • 1
  1. 1.A. N. Nesmeyanov Institute of Heteroorganic CompoundsAcademy of Sciences of the USSRMoscow

Personalised recommendations