Quantum-chemical study of nonclassical ions C5H5E(IV)+ and C3H3E(IV)+

  • Yu. A. Borisov
  • Yu. S. Nekrasov
  • V. F. Sizoi
Physical Chemistry


  1. 1.

    For nonclassical ions of the type of C5H5E+ (E=C, Si), the CNDO/2 method predicts a higher stability for the structures of charged nido-clusters than for classical structures of the phenyl cation type.

  2. 2.

    For the ions C3H3E+ (E=C, Si), the most favorable configuration is pyramidal, with symmetry C3v.



Phenyl High Stability Classical Structure Cation Type Favorable Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. Levsen, Fundamental Aspects of Organic Mass Spectrometry, Verlag Chemie, New York (1978), p. 258.Google Scholar
  2. 2.
    W. J. Hehre, J. Am. Chem. Soc.,94, 5919 (1972).Google Scholar
  3. 3.
    D. M. Brouwer and H. Hogeveen, Prog. Phys. Org. Chem.,9, 179 (1972).Google Scholar
  4. 4.
    P. Jutzi, F. Kohl, and C. Krüger, Angew. Chem., Int. Ed.,18, 59 (1979).Google Scholar
  5. 5.
    Yu. S. Nekrasov, Yu. A. Borisov, and S. S. Chernov, Izv. Akad. Nauk SSSR, Ser. Khim., p. 1420 (1979).Google Scholar
  6. 6.
    Yu. S. Nekrasov (Nekrasow), V. F. Sizoi, D. V. Zagorevskii, and Yu. A. Borisov, J. Organomet. Chem.,205, 157 (1981).Google Scholar
  7. 7.
    R. J. Aulett and H. M. Colquhoun, J. Chem. Res. (S), p. 148 (1977).Google Scholar
  8. 8.
    Yu. S. Nekrasov, Yu. A. Borisov, V. F. Sizoi, and D. V. Zagorevskii, Summaries of Papers from 7th All-Union Conference “Physical and Mathematical Methods in Coordination Chemistry”, Shtiintsa, Kishinev (1980), p. 88.Google Scholar
  9. 9.
    P. Jutzi, F. Kohl, P. Hoffman, C. Krüger, and Yi Hung Tsay, Chem. Ber.,113, 757 (1980).Google Scholar
  10. 10.
    K. Kogh-Jespersen, J. Chandrasekhar, and Schleyer von Rague, J. Org. Chem.,45, 1608 (1980).Google Scholar
  11. 11.
    Yu. A. Borisov and Yu. S. Nekrasov, Izv. Akad. Nauk SSSR, Ser. Khim., p. 1693 (1980).Google Scholar
  12. 12.
    H. Hogeveen and P. W. Kwant, J. Am. Chem. Soc.,96, 2208 (1974).Google Scholar
  13. 13.
    H. T. Jonkman and W. C. Wieuwpoort, Tetrahedron Lett., p. 1671 (1973).Google Scholar
  14. 14.
    W. A. M. Castenmiller and H. M. Buck, Rec. Trav. Chim.,96, 207 (1977).Google Scholar
  15. 15.
    P. K. Bischof and M. J. S. Dewar, J. Am. Chem. Soc.,97, 2278 (1975).Google Scholar
  16. 16.
    M. Hargittai and I. Hargittai, The Molecular Geometries of Coordination Compounds in the Vapour Phase, Elsevier, New York (1977).Google Scholar
  17. 17.
    Yu. S. Nekrasov, V. F. Sizoi, and Yu. A. Borisov, Izv. Akad. Nauk SSSR, Ser. Khim., p. 2388 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Yu. A. Borisov
    • 1
  • Yu. S. Nekrasov
    • 1
  • V. F. Sizoi
    • 1
  1. 1.A. N. Nesmeyanov Institute of Heteroorganic CompoundsAcademy of Sciences of the USSRMoscow

Personalised recommendations