Advertisement

The effect of acidity on the catalytic action of PdCu zeolites in the oxidation of ethylene to acetaldehyde

  • Kh. M. Minachev
  • N. Ya. Usachev
  • Ya. I. Isakov
  • A. P. Rodin
  • V. P. Kalinin
Physical Chemistry

Conclusions

  1. 1.

    The acidity determines the activity of PdCu ion-exchange catalyst based on type A, X, and Y zeolites and mordenite in the oxidation of ethylene to acetaldehyde. Increasing the concentration of acidic OH groups in the PdCuNaY catalyst through decationization reduces the activity, selectivity, and stability of the catalyst.

     
  2. 2.

    IR studies have shown that NH3, introduced into the PdCu zeolite either through adsorption or as part of Pd(NH3) 4 2+ complexes, can interact with either the acidic H+ centers of the aluminosilicate crystals or with the transition-metal cations. There is the possibility of a redistribution of NH3 between the NH 4 + ions and the M(NH3) X 2+ faujasite complexes.

     
  3. 3.

    The reversible poisoning of PdCu zeolites by ammonia is due, in the first instance, to the formation of ammoniacal complexes with the palladium cations. Increasing the acidity of the PdCu zeolite reduces the deactivating action of ammonia.

     

Keywords

Oxidation Acetaldehyde Ammonia Zeolite Acidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Kh. M. Minachev and Ya. I. Isakov, Neftekhimiya,16, 383 (1976).Google Scholar
  2. 2.
    P. A. Jacobs, Carboniogenic Activity of the Zeolites, Elsevier Sci. Pub. Co., Amsterdam-Oxford-New York (1977).Google Scholar
  3. 3.
    H. Arai, T. Yamashiro, T. Kubo, and H. Tominaga, Bull. Jpn. Petrol. Inst.,18, 39 (1976).Google Scholar
  4. 4.
    Kh. M. Minachev, N. Ya. Usachev, A. P. Rodin, V. P. Kalinin, and Ya. I. Isakov, Nefte-khimiya,19, 751 (1979).Google Scholar
  5. 5.
    J. B. Uytterhoeven, L. G. Christner, and W. K. Hall, J. Phys. Chem.,69, 2117 (1965).Google Scholar
  6. 6.
    D. R. Flentge, J. H. Lunsford, P. A. Jacobs, and J. B. Uytterhoeven, J. Phys. Chem.,79, 354 (1975).Google Scholar
  7. 7.
    K. Nakamoto, Intrared Spectra of Inorganic and Coordination Compounds, Wiley (1963).Google Scholar
  8. 8.
    D. B. Powell and N. Sheppard, J. Chem. Soc., 3108 (1956).Google Scholar
  9. 9.
    A. V. Kiselev and V. I. Lygin, Infrared Spectra of Surface Compounds [in Russian], Nauka, Moscow (1972), p. 415.Google Scholar
  10. 10.
    H. Praliaud and G. Condurier, J. Chem. Soc. Faraday Trans., 1,75, 2601 (1979).Google Scholar
  11. 11.
    T. Kubo, F. Kumada, and H. Tominaga, J. Chem. Soc. Jpn. Chem. Ind. Chem., 1621 (1972); Ref. Zh. Khim., 7B1307 (1973).Google Scholar
  12. 12.
    I. I. Moiseev, Zh. Vses. Khim. O-va,22, 30 (1977).Google Scholar
  13. 13.
    Kh. M. Minachev, N. Ya. Usachev, Ya. I. Isakov, A. P. Rodin, and V. P. Kalinin, Izv. Akad. Nauk SSSR, Ser. Khim., 267 (1981).Google Scholar
  14. 14.
    Ch. M. Minachev, G. V. Antosin, E. S. Špiro, F. Vogt, K.-H. Bager, and H. Bremer, Z. Chem.,17, 386 (1977).Google Scholar
  15. 15.
    S. J. Gentry, R. Rudham, and M. K. Sanders, J. Catal.,35, 376 (1974).Google Scholar
  16. 16.
    D. Barthomeuf, J. Phys. Chem.,83, 249 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Kh. M. Minachev
    • 1
  • N. Ya. Usachev
    • 1
  • Ya. I. Isakov
    • 1
  • A. P. Rodin
    • 1
  • V. P. Kalinin
    • 1
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRMoscow

Personalised recommendations