Advertisement

Electrophilicity of perfluoroisobutylene and methyl perfluoromethacrylate

  • É. P. Lur'e
  • E. G. Gal'pern
  • N. P. Gambaryan
  • E. M. Rokhlin
  • E. I. Mysov
Organic Chemistry

Conclusions

  1. 1.

    Interaction of m- and p-fluorophenylmagnesium bromide with perfluoroisobutylene or with methyl perfluoromethacrylate gives the corresponding arylperfluoroisobutylenes and methylα-trifluoromethyl-β-fluoro-β-arylacrylates.

     
  2. 2.

    Examination of the19F NMR spectra of substituted m- and p-fluorobenzenes reveals that the unsaturated units CF=C(CF3)X and trans-CH=CHX have a greater deshielding effect on the fluorine nucleus in C6H4F when X=CF3 than when X=CO2Me.

     
  3. 3.

    Extended Hückel and CNDO/2 calculations on methyl perfluoromethacrylate and perfluoroisobutylene reveal that the negative π-electron charge on the “central” carbon atom is more efficiently delocalized by the methoxycarbonyl group than the trifluoromethyl.

     
  4. 4.

    The higher electrophilicity of methyl perfluoromethacrylate relative to perfluoroisobutylene stems from the greater ability of the alkoxycarbonyl group to stabilize the intermediate carbanion or the carbanion-like transition state in the reaction with the nucleophile.

     

Keywords

Methyl Bromide Carbon Atom Transition State Fluorine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. M. Rokhlin, E. G. Abduganiev, and U. Utebaev, Usp. Khim.,45, 1177 (1976).Google Scholar
  2. 2.
    E. N. Prilezhaeva, The Prilezhaeva Reaction. Electrophilic Oxidation [in Russian], Nauka (1974).Google Scholar
  3. 3.
    I. L. Knunyants, L. T. Lantseva, É. P. Lur'e, and Yu. V. Zeifman, Izv. Akad. Nauk SSSR, Ser. Khim., 231 (1977).Google Scholar
  4. 4.
    Yu. A. Zhdanov and V. I. Minkin, Correlation Analysis in Organic Chemistry [in Russian], Izd. Rostov. Univ. (1966).Google Scholar
  5. 5.
    L. M. Yagupol'skii, A. Ya. Il'chenko, and N. V. Kondratenko, Usp. Khim.,43, 64 (1974).Google Scholar
  6. 6.
    L. M. Yagupol'skii, V. F. Bystrov, A. U. Stepanyants, and Yu. A. Fialkov, Zh. Obshch. Khim.,34, 3682 (1964).Google Scholar
  7. 7.
    V. A. Dombrovskii, E. K. Chervinskaya, O. I. Kosenyuk, and A. V. Dombrovskii, Zh. Org. Khim.,6, 2300 (1970).Google Scholar
  8. 8.
    A. I. Talvik, Reakts. Sposobn. Org. Soedin.,9, 233 (1972).Google Scholar
  9. 9.
    E. Dementi and D. L. Raimondi, J. Chem. Phys.,38, 2686 (1963).Google Scholar
  10. 10.
    O. Sinanoglu and K. B. Wiberg (editors), Sigma Molecular Orbital Theory, Yale University Press, New Haven (1970).Google Scholar
  11. 11.
    J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).Google Scholar
  12. 12.
    G. W. Wheland, Resonance in Organic Chemistry, Wiley, New York (1955).Google Scholar
  13. 13.
    R. L. Hildebrandt, A. L. Andreassen, and S. H. Bauer, J. Phys. Chem.,74, 1586 (1970).Google Scholar
  14. 14.
    I. L. Knunyants, L. S. German, and B. L. Dyatkin, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 226 (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • É. P. Lur'e
    • 1
  • E. G. Gal'pern
    • 1
  • N. P. Gambaryan
    • 1
  • E. M. Rokhlin
    • 1
  • E. I. Mysov
    • 1
  1. 1.Institute of Heteroorganic CompoundsAcademy of Sciences of the USSRMoscow

Personalised recommendations