Skip to main content
Log in

Abstract

The sloshing problem is a linear eigenvalue problem for a partial differential operator that describes the small lateral oscillations of the free surface of an ideal fluid on a container subject to gravity. We consider two-dimensional problems on regions representing the cross-section of a cylindrical tank or canal. A conformal mapping transforms the sloshing problem on the given region to a weighted eigenvalue problem on a simple region such as a rectangle. The weighted problem can be treated very effectively by the powerful methods of intermediate problems. The strength and versatility of the method is illustrated with a variety of examples.

Zusammenfassung

Das Schlingerproblem ist ein lineares Eigenwertproblem für einen partiellen Differentialoperator, das die kleinen seitlichen Schwingungen der freien Oberfläche einer idealen Flüssigkeit in einem gewichtsbelasteten Behälter beschreibt. Wir betrachten zweidimensionale Schlingerprobleme im Querschnitt eines zylindrischen Behälters bzw. Kanals. Eine konforme Abbildung verwandelt das Schwingungsproblem auf dem gegebenen Gebiete in ein gewichtetes Eigenwertproblem in einem einfacheren Gebiete, z. B. in einem Rechteck. Das transformierte Problem kann dann leicht durch die Methode der Zwischenprobleme (Weinstein) behandelt werden. Eine Anzahl von Beispielen zeigen die Leistungsfähigkeit der Methode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. N. Abramson,Dynamic behavior of liquid in moving container. Appl. Mech. Rev.16, 501–506 (1963).

    Google Scholar 

  2. H. N. Abramson, ed.,The dynamic behavior of liquids in moving containers. NASA Sp-106, Washington, 1966.

  3. G. B. Airy,Tides and Waves, Encyclopaedia Metropolitana, Vol. 5, London (1845), pp. 241–396.

    Google Scholar 

  4. N. W. Bazley,Lower bounds for eigenvalues with application to the helium atom. Proc. Nat. Acad. Sci. USA.45, 850–853 (1959).

    Google Scholar 

  5. N. W. Bazley and D. W. Fox,Truncations in the method of intermediate problems for lower bounds to eigenvalues. J. Res. Nat. Bur. Standards Sect. B65, 105–111 (1961).

    Google Scholar 

  6. C. A. Beattie, DETMET User's Manual:A guide to calculating lower bounds to eigenvalues by the method of truncation. Milton S. Eisenhower Research Center Preprint 47, May 1981, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland.

    Google Scholar 

  7. J. M. Boyle, B. S. Garbow, Y. Ikebe, V. C. Klema, C. B. Moler, and B. T. Smith,Matrix eigensystem routines-Eispack guide. Springer, Heidelberg, 1974.

    Google Scholar 

  8. J. M. Boyle, J. J. Dongarra, B. S. Garbow, and C. B. Moler,Matrix eigensystem routines-Eispack guide extension. Springer, Heidelberg, 1977.

    Google Scholar 

  9. B. Budiansky,Sloshing of liquids in circular canals and spherical tanks. J. Aerospace Sci.27, 161–173 (1960).

    Google Scholar 

  10. C. S. Colonna,High precision calculation of parameters for frequencies and mode shapes of uniform beams. CF-3093, July 1964, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland.

    Google Scholar 

  11. G. Chrystal,Some further results in the mathematical theory of seiches. Proc. Roy. Soc. Edinburgh27, 637–647 (1905).

    Google Scholar 

  12. G. Chrystal,On the hydrodynamical theory of seiches, with bibliographic sketch. Trans. Roy. Soc. Edinburgh41, 599–649 (1906).

    Google Scholar 

  13. W.-H. Chu,Fuel sloshing in a spherical tank filled to an arbitrary depth. J. IAA2, 1972–1979 (1964).

    Google Scholar 

  14. A. M. J. Davis,Two-dimensional oscillations in a canal of arbitrary cross-section. Proc. Cambridge Philos. Soc.61, 827–846 (1965).

    Google Scholar 

  15. A. M. J. Davis,Short surface waves in a canal: dependence of frequency on curvature. Proc. Roy. Soc. London Ser. A313, 249–260 (1969).

    Google Scholar 

  16. A. M. J. Davis,Waves in the presence of an infinite dock with gap. J. Inst. Math. Appl.6, 141–156 (1970).

    Google Scholar 

  17. J. J. Dongarra, C. B. Moler, and G. W. Stewart,Linpack User's Guide. Siam, Philadelphia, 1979.

    Google Scholar 

  18. L. W. Ehrlich, J. D. Riley, W. G. Strang, and B. A. Troesch,Finite difference techniques for a boundary problem with an eigenvalue in a boundary condition, J. Siam9, 149–164 (1961).

    Google Scholar 

  19. L. Euler, Principia motus fluidorum,Novi commentarii academicae scientiarum imperialis petro-politanae. Tom. VI, 1761, pp. 271–311.

    Google Scholar 

  20. D. W. Fox and J. R. Kuttler,Upper and lower bounds for sloshing frequencies by intermediate problems. Z. angew. Math. Phys.32, 667–682 (1981).

    Google Scholar 

  21. D. W. Fox and W. C. Rheinboldt,Computational methods for determining lower bounds for eigenvalues of operators in Hilbert space. Siam Rev.8, 427–462 (1966).

    Google Scholar 

  22. D. W. Fox and V. G. Sigillito,Sloshing eigenvalues of two-dimensional regions with holes. Z. angew. Math. Phys.32, 658–666 (1981).

    Google Scholar 

  23. S. Gould,Variational methods for eigenvalue problems, 2nd ed., Toronto, 1966.

  24. G. Green,On the motion of waves in a variable canal of small depth and width. Trans. Cambridge Philos. Soc.6, 457–462 (1838) [Mathematical Papers, Macmillan, London, 1871, pp. 223–230].

    Google Scholar 

  25. G. Green,Note on the motion of waves in canals. Trans. Cambridge Philos. Soc.7, 87–95 (1842) [Mathematical Papers, Macmillan, London, 1871, pp. 271–280].

    Google Scholar 

  26. A. G. Greenhill,Wave motion in hydrodynamics. Amer. J. Math. 9, 62–112 (1887).

    Google Scholar 

  27. W. L. Haberman, E. J. Jarski, and J. E. A. John,A note on the sloshing motion in a triangular tank. Z. angew. Math. Phys.25, 292–293 (1974).

    Google Scholar 

  28. J. Hadamard,Sur les ondes liquides. C. R. Acad. Sci. Paris150, 609–611, and 772–774 (1910).

    Google Scholar 

  29. J. Hadamard,Sur les ondes liquides. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (5)25, 716–719 (1916).

    Google Scholar 

  30. P. Henrici, B. A. Troesch, and L. Wuytack,Sloshing frequencies for a half-space with circular or strip-like aperture. Z. angew. Math. Phys.21, 285–318 (1970).

    Google Scholar 

  31. P. Kelland,On the theory of waves I, II. Trans. Roy. Soc. Edinburgh14, 497–545 (1840) and 15, 101–144 (1844).

    Google Scholar 

  32. G. Kirchhoff,Über stehende Schwingungen einer schweren Flüssigkeit. Berl. Monatsber., May 1879. [Gesammelte Abhandlungen, Barth, Leipzig, 1882, p. 428.]

    Google Scholar 

  33. H. Kober,Dictionary of conformal representations. Dover, New York, 1957.

    Google Scholar 

  34. J. R. Kuttler and V. G. Sigillito.Lower bounds for sloshing frequencies. Quart. Appl. Math.27, 405–408 (1969).

    Google Scholar 

  35. H. Lamb,Hydrodynamics. 1st ed., Cambridge, 1879, 6th ed., 1932. Reprinted by Dover, New York, 1945.

  36. E. Levin,Oscillations of a fluid in a rectilinear conical container. J. IAAA1, 1447 (1963).

    Google Scholar 

  37. H. M. Macdonald,Waves in canals. Proc. London Math. Soc.25, 101–111 (1894).

    Google Scholar 

  38. H. M. Macdonald,Waves in canals and on a sloping bank. Proc. London Math. Soc.27, 622–632 (1896).

    Google Scholar 

  39. J. W. Miles,On the eigenvalue problem for fluid sloshing in a half-space. Z. angew. Math. Phys.23, 861–869 (1972).

    Google Scholar 

  40. N. N. Moiseev,Introduction to the theory of oscillations of liquid-containing bodies. Advances in Appl. Mech.8, 233–289 (1964).

    Google Scholar 

  41. N. N. Moiseev and A. A. Petrov,The calculation of free osculations of a liquid in a motionless container. Advances in Appl. Mech.9, 91–154 (1968).

    Google Scholar 

  42. M. A. Ostrogradsky,Mémoire sur la propagation des ondes dans une bassin cylindrique. Mém. des Sav. Étrang.3 (1862).

  43. B. A. Packham,Small-amplitude waves in a straight channel of uniform triangular cross-section. Quart. J. Mech. Appl. Math.33, 179–187 (1980).

    Google Scholar 

  44. H. Poincaré,Leçons de méchanique céleste. Vol. 3, Gauthier-Villars, Paris, 1910.

    Google Scholar 

  45. S. D. Poisson,Mémoire sur la théorie des ondes. Mém. Acad. Roy. Sci. Inst. France (2),1, 71–186 (1816).

    Google Scholar 

  46. S. D. Poisson,Sur les petites oscillations de l'eau contenue dans un cylindre. Annales de Ger-gonne19, 225 (1828–9).

    Google Scholar 

  47. B. M. Sen,Waves in canals and basins. Proc. London Math. Soc. (2),26, 363–376 (1927).

    Google Scholar 

  48. G. G. Stokes,Report on recent researches in hydrodynamics. Report of the Sixteenth Meeting of the British Association for the Advancement of Science, Southampton, 1846, pp. 1–20. [Mathematical and Physical Papers, Vol. 1, Cambridge, 1880, pp. 197–229.]

  49. E. Storchi,Legame fra la forma del pelo libero e quella del recipiente nette oscillazioni di un liquido. Ist. Lombardo Accad. Sci. Lett. Rend. Cl. Sci. Mat. Nat. (3)13, 95–112 (1949).

    Google Scholar 

  50. E. Storchi,Piccole oscillazioni dell'acqua contenuta da pareti piane. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8),12, 544–52 (1952).

    Google Scholar 

  51. J. W. Strutt, Lord Rayleigh,On waves. Philos. Mag. (5), 1, 257–259 (1876), [Scientific Papers, Vol. 1, Cambridge, 1899–1920, p. 25.].

    Google Scholar 

  52. J. W. Strutt, Lord Rayleigh,Philos. Mag. (5),47, 556 (1899). [Scientific Papers, Vol. 4, Cambridge, 1899–1920, p. 407.]

    Google Scholar 

  53. B. A. Troesch,Free oscillations of a fluid in a container. Boundary Problems in Differential Equations, Univ. Wisc., Madison, 1960, pp. 279–299.

    Google Scholar 

  54. B. A. Troesch,An isoperimetric sloshing problem. Comm. Pure Appl. Math.18, 319–338 (1965).

    Google Scholar 

  55. B. A. Troesch,Sloshing frequencies in a half-space by Kelvin inversion. Pacific J. Math.47, 539–552 (1973).

    Google Scholar 

  56. B. A. Troesch,Upper bounds for the fundamental eigenvalue for a domain of unknown shape. J. Optimization Theory Appl.12, 512–526 (1973).

    Google Scholar 

  57. B. A. Troesch,Proof of a conjecture on sloshing frequencies in a half-space. Z. angew. Math. Phys.25, 655–657 (1974).

    Google Scholar 

  58. B. A. Troesch and H. R. Troesch,A remark on the sloshing frequencies for a half-space. Z. angew. Math. Phys.23, 703–711 (1972).

    Google Scholar 

  59. B. A. Troesch and P. D. Weidman,Containers with isochronus fluid oscillations. Siam J. Appl. Math.23, 477–489 (1972).

    Google Scholar 

  60. F. Ursell,Short surface waves in a canal: dependence of frequency on curvature. J. Fluid Mech.63, 177–181 (1974).

    Google Scholar 

  61. J. V. Wehausen and E. V. Laitone,Surface waves. Handbuch der Physik IX, Springer, Berlin, 1960, pp. 446–778.

    Google Scholar 

  62. A. Weinstein,Sur la stabilité des plagues encastrées. C. R. Acad. Sci. Paris200, 107–109 (1935).

    Google Scholar 

  63. A. Weinstein and W. Stenger,Methods of intermediate problems for eigenvalues. Academic Press, New York, 1972.

    Google Scholar 

  64. J. Odhnoff,Operators generated by differential problems with eigenvalue parameter in equation and boundary condition. Medd. Lunds Univ. Mat. Sem.14 (1959).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Naval Sea Systems Command, U.S. Department of the Navy, under Contract N00024-81-C-5301.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, D.W., Kuttler, J.R. Sloshing frequencies. Z. angew. Math. Phys. 34, 668–696 (1983). https://doi.org/10.1007/BF00948809

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00948809

Keywords

Navigation