Skip to main content
Log in

Thermally driven acoustic oscillations, Part VI: Excitation and power

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Summary

In continuation of previous work in the field of thermally driven acoustic oscillations, the problem of excited oscillations is treated and presented in detail for the Sondhauss tube and for gas-liquid oscillations. The problem of the maximally attainable mechanical power from a Sondhauss tube is discussed.

Zusammenfassung

In Fortsetzung von früheren Arbeiten im Gebiet der thermisch getriebenen Gasschwingungen wird das Problem der angefachten Schwingungen behandelt und für ein Sondhauss-Rohr wie auch für Gas-Flüssigkeits-Schwingungen ausführlich dargestellt. Die Frage der maximalen mechanischen Leistung, die von einem Sondhauss-Rohr abgegeben werden kann, wird diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Rott,Damped and thermally driven acoustic oscillations in wide and narrow tubes; Z. Angew. Phys.20, 230–243 (1969).

    Google Scholar 

  2. N. Rott,Thermally driven acoustic oscillations, part II: Stability limit for helium; Z. Angew. Math. Phys.24, 54–72 (1973).

    Google Scholar 

  3. N. Rott,Thermally driven acoustic oscillations, part III: Second-order heat flux; Z. Angew. Math. Phys.26, 43–49 (1975).

    Google Scholar 

  4. N. Rott and G. Zouzoulas,Thermally driven acoustic oscillations, part IV: Tubes with variable cross-section; Z. Angew. Math. Phys.27, 197–224 (1976).

    Google Scholar 

  5. G. Zouzoulas and N. Rott,Thermally driven acoustic oscillations, part V: Gas-liquid oscillations; Z. Angew. Math. Phys.27, 325–334 (1976).

    Google Scholar 

  6. U. A. Müller,Thermoakustische Gasschwingungen: Definition und Optimierung eines Wirkungsgrades. Diss. ETH Nr. 7014 (1982).

  7. N. Rott,Thermoacoustics; Adv. in Appl. Mech.20, 135–175 (1980).

    Google Scholar 

  8. H. A. Kramers,Vibrations of a gas column, Physica15, 971 (1949).

    Google Scholar 

  9. M. C. Bernasconi,Influence of finite temperature gradients on thermally-driven acoustic oscillations; Diss. ETH Nr. 6229 (1978).

  10. L. van Wijngaarden,On the oscillations near and at resonance in open pipes, J. Eng. Math.2, 225–240 (1968).

    Google Scholar 

  11. P. Merkli and H. Thomann,Transition to tubulence in an oscillating pipe flow; J. Fluid Mech.68, 567–575 (1975).

    Google Scholar 

  12. C. Clarion and R. Pélissier,A theoretical and experimental study of the velocity distribution and transition to turbulence in free oscillatory flow; J. Fluid Mech.70, 59–80 (1975).

    Google Scholar 

  13. T. Yazaki, A. Tominaga, and Y. Narahara,Thermally driven acoustic oscillations: Second-harmonic; Phys. Lett.79 A, 407–409 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, U.A., Rott, N. Thermally driven acoustic oscillations, Part VI: Excitation and power. Z. angew. Math. Phys. 34, 609–626 (1983). https://doi.org/10.1007/BF00948805

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00948805

Keywords

Navigation