Skip to main content
Log in

Energy stability of thermally modulated Poiseuille flow

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The nonlinear stability of time-periodic Poiseuille Flow is investigated using the Energy Theory. The time dependency in the basic flow is obtained by periodic modulation of the ground temperature. Energy stability limits, obtained by a combination of Galerkin and Floquet methods, are lowered by the thermal modulation. For both strong and mean energy formulations, the effect of increasing the modulation amplitude is to destabilize the flow which is demonstrated by a decrease in the stability boundary. A shift in the critical wavenumber due to modulation is also observed.

Zusammenfassung

Die nicht-lineare Stabilität der zeitlich periodischen Poiseuille-Strömung wird mittels Energiemethoden untersucht. Die Zeitabhängigkeit wird mit Hilfe einer periodischen Modulation der Grundtemperatur erhalten. Die Energie-Stabilitätsgrenze, die durch eine Kombination von Galerkin- und Floquet-Methoden erhalten wurde, wird durch die thermische Modulation heruntergesetzt. Sowohl für die starke wie auch für die mittlere Energie-Formulierung ist der Effekt der zunehmenden Energie-Amplitude eine Abnahme der Stabilität; dabei wird auch eine Änderung der kritischen Wellenzahl beobachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Davis,The stability of time periodic flows. Ann. Rev. Fluid Mech.,8, 57–74 (1976).

    Google Scholar 

  2. C. E. Grosh and H. Salween,The stability of steady and time-dependent plane Poiseuille flow. J. Fluid Mech.,34, 177–205 (1968).

    Google Scholar 

  3. A. P. Gallagher and A. McD. Mercer,On the behavior of small disturbances in plance Couette flow. J. Fluid Mech.13, 91–100 (1962).

    Google Scholar 

  4. G. Venezian,Effect of modulation on the onset of thermal convection. J. Fluid Mech.,35, 243–254 (1969).

    Google Scholar 

  5. C. H. Yih,Fluid mechanics. McGraw-Hill, New York 1969.

    Google Scholar 

  6. M. Van Dyke,Perturbation methods in fluid mechanics, applied mathematics and mechanics.8, Academic Press, New York 1964.

    Google Scholar 

  7. B. A. Finlayson,The method of weighted residuals and variational principles. Vol. 87 of Mathematics in Sci. and Eng., Academic Press, New York 1972.

    Google Scholar 

  8. L. Cesari,Asymptotic behavior and stability problems in ordinary differential equations. 2nd Ed., Springer-Verlag, Berlin 1963.

    Google Scholar 

  9. S. Carmi and C. C. Sinha,Asymptotic stability of unsteady inviscid stratified flows. Acta Technica,89, 61–67 (1979).

    Google Scholar 

  10. C. Von Kerczek,Stability of modulated plane Couette flow. Phys. Fluids,19, 1288–1295 (1976).

    Google Scholar 

  11. S. Carmi and J. I. Tustaniwskyj,Stability of modulated finite-gap cylindrical Couette flow: linear theory. J. Fluid Mech.,108, 19–42 (1981).

    Google Scholar 

  12. R. J. Donnelly,Experiments on the stability of viscous flow between rotating cylinders. III., Enhancement of stability by modulation, Proc. Roy. Soc., A.281, 130–139 (1964).

    Google Scholar 

  13. S. H. Davis and C. Von Kerczek,A reformulation of energy stability theory. Arch. Rational Mech. Anal.,52, 112–117 (1973).

    Google Scholar 

  14. B. R. Ramporian and S-W. Tu,An experimental study of oscillatory pipe flow at transitional Reynolds number. J. Fluid Mech.,100, 513–544 (1980).

    Google Scholar 

  15. Spiegel and Veronis,On the Boussinesq approximation for a compressible fluid. Astrophys. J.,131, 442–447 (1960).

    Google Scholar 

  16. J. Serrin,On the stability of viscous fluid motions. Arch. Rational Mech. Anal.,3, 1–13 (1959).

    Google Scholar 

  17. D. D. Joseph,On the stability of the Boussinesq equations. Arch. Rational Mech. Anal.,220, 59–71 (1965).

    Google Scholar 

  18. S. Carmi,Energy stability of modulated flows. Phys. Fluids,17, 1951–1955 (1974).

    Google Scholar 

  19. P. J. Riley and R. L. Laurence,Linear stability of modulated circular Couette flow. J. Fluid Mech.,75, 624–646 (1976).

    Google Scholar 

  20. D. D. Joseph,Nonlinear stability of the Boussinesq equations by the method of energy. Arch. Rational Mech. Anal.,22, 163–184 (1966).

    Google Scholar 

  21. S. Rosenblat and G. A. Tanaka,Modulation of thermal convection instability. Phys. Fluids,14, 1319–1322 (1971).

    Google Scholar 

  22. D. L. Harris and W. H. Reid,On orthogonal functions which satisfy four boundary conditions, I, Tables of use in Fourier-type expansions. Astrophys. J. Suppl. Ser.,3, 429–447 (1958).

    Google Scholar 

  23. H. Ottersten, K. R. Hardy, and C. G. Little,Radar and solar probing of waves and turbulence in statistically stable clear-air layers. Boundary layer meterology,4, 47–89, D. Reidel Publ. Co., Dordrecht, Holland 1973.

    Google Scholar 

  24. R. C. Shulze and S. Carmi,Nonlinear stability of heated parallel flows. Phys. Fluids,19, 792–795 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A major portion of this work comprises part of the doctoral thesis of R. C. Shulze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shulze, R.C., Carmi, S. Energy stability of thermally modulated Poiseuille flow. Z. angew. Math. Phys. 34, 583–595 (1983). https://doi.org/10.1007/BF00948803

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00948803

Keywords

Navigation