Advertisement

Drag on an elliptic cylinder in a fluid particle suspension

  • T. K. V. Iyengar
  • N. Srinivasacharyulu
  • J. V. Ramana Murthy
Original Papers

Abstract

An elliptic cylinder is performing oscillations parallel to either of the principal axes of the cross-sectional ellipse in a fluid particle suspension. The stream function governing the flow and the velocity components are determined in terms of Mathieu functions. The drag on the cylinder is evaluated and expressed in terms of two parametersK andK′. The effects of the variation of the frequency parameter, eccentricity parameter and relaxation time parameter on the drag parametersK, K′ is studied numerically.

Keywords

Relaxation Time Velocity Component Mathematical Method Principal Axis Particle Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. P. Kanwal,Rotary and longitudinal oscillations of axisymmetric bodies in a viscous fluid. Q.J.M.A.M.8, 146–163 (1955).Google Scholar
  2. [2]
    R. P. Kanwal,Vibrations of an elliptic cylinder and a flat plate in a viscous fluid. ZAMM35, 17–22 (1955).Google Scholar
  3. [3]
    K. R. Frater,Drag on a sphere oscillating in an elastico-viscous fluid. ZAMP18, 798–803 (1967).Google Scholar
  4. [4]
    K. R. Frater,Drag on a circular cylinder oscillating in an elasticoviscous fluid. ZAMP19, 510–512 (1968).Google Scholar
  5. [5]
    S. K. Lakshmana Rao and P. Bhujanga Rao,The oscillations of a sphere in a micropolar fluid, Int. J. Engng. Sci.9, 651–672 (1971).Google Scholar
  6. [6]
    S. K. Lakshmana Rao and P. Bhujanga Rao,Circular cylinder oscillating about a mean position in incompressible micropolar fluid, Int. J. Engng. Sci.10, 185–191 (1972).Google Scholar
  7. [7]
    S. K. Lakshmana Rao and T. K. V. Iyengar,The rectilinear oscillations of a spheroid in a micropolar fluid, Int. J. Engng. Sci.19, 161–188 (1981).Google Scholar
  8. [8]
    S. K. Lakshmana Rao, T. K. V. Iyengar and K. Venkatapathi Raju,The rectilinear oscillations of an elliptic cylinder in incompressible micropolar fluid: Int. J. Engng. Sci.25, 531–548 (1987).Google Scholar
  9. [9]
    S. K. Lakshmana Rao and T. K. V. Iyengar,Analytical and computational studies in couple stress fluid flows-U.G.C. Research Project Report No. F 8-4/82 SR III (1985).Google Scholar
  10. [10]
    Shankara Kishore Kumar,Some problems in fluid-particle suspension flows—Doct. diss. submitted to I.I. T., Madras 1984.Google Scholar
  11. [11]
    P. G. Saffman,On the stability of laminar flow of a dusty gas, J. Fluid. Mech.13, 120 (1962).Google Scholar
  12. [12]
    N. W. Mcn Lachlan,Theory and applications of Mathieu functions, Oxford 1947.Google Scholar
  13. [13]
    H. Abramowitz and I. A. Stegun,Handbook of Mathematical functions with Formulas, Graphs and Mathematical Tables, Dover Publ., New York 1965.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1988

Authors and Affiliations

  • T. K. V. Iyengar
    • 1
  • N. Srinivasacharyulu
    • 1
  • J. V. Ramana Murthy
    • 1
  1. 1.Dept. of MathematicsRegional Engineering CollegeWarangalIndia

Personalised recommendations