Skip to main content
Log in

Error behavior in optimal relaxation methods

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Summary

Stiefel's theory of optimal relaxation methods is applied to study the behavior of the error, measured by (the square of) an energy-type norm, as the number of iteration steps tends to infinity. It is shown how certain features of the initial residual vector affect the rate of convergence. Of particular interest are cases in which the higher-order components of the initial residual vector, in the coordinate system of principal axes, are more and more attenuated.

Zusammenfassung

Stiefels Theorie der optimalen Relaxationsverfahren wird angewandt, um das Verhalten des Fehlers zu studieren, wenn die Zahl der Iterationsschritte nach Unendlich geht, wobei der Fehler durch das Quadrat einer Energie-Norm gemessen wird. Es wird gezeigt, wie gewisse Eigenschaften des Anfangsresiduumvektors die Konvergenzgeschwindigkeit beeinflussen. Von besonderem Interesse sind Fälle, in welchen die höheren Komponenten des Anfangsresiduumvektors in den Koordinaten der Hauptachsen mehr und mehr abgeschwächt sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Chihara,An introduction to orthogonal polynomials. Gordon and Breach, New York 1978.

    Google Scholar 

  2. W. Gautschi,Minimal solutions of three-term recurrence relations and orthogonal polynomials. Math. Comp.36, 547–554 (1981).

    Google Scholar 

  3. W. Gautschi,A survey of Gauss-Christoffel quadrature formulae. In: E. B. Christoffel; The influence of his work in mathematics and the physical sciences; International Christoffel Symposium; A collection of articles in honour of Christoffel on the 150th anniversary of his birth (P. L. Butzer and F. Fehér, eds.). Birkhäuser, Basel 1981.

    Google Scholar 

  4. W. Gautschi,An algorithmic implementation of the generalized Christoffel theorem. In: Numerische Integration (G. Hämmerlin, ed.). Birkhäuser, Basel 1982.

    Google Scholar 

  5. M. R. Hestenes and E. Stiefel,Methods of conjugate gradients for solving linear systems. J. Res. Nat Bur. Standards49, 409–436 (1952).

    Google Scholar 

  6. O. Perron,Die Lehre von den Kettenbrüchen II. 3rd ed., Teubner, Stuttgart 1957.

    Google Scholar 

  7. E. Stiefel,Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme. Comm. Math. Helv. 29, 157–179 (1955).

    Google Scholar 

  8. E. Stiefel,On solving Fredholm integral equations. J. Soc. Indust. Appl. Math.4, 63–85 (1956).

    Google Scholar 

  9. E. Stiefel,Recent developments in relaxation techniques. Proc. Internat. Congress of Mathematicians, Vol. 1, pp. 384–391. North Holland, Amsterdam 1957.

    Google Scholar 

  10. G. Szegö,Orthogonal polynomials. 4th ed., Amer. Math. Soc., Providence, R.I. 1975.

    Google Scholar 

  11. V. B. Uvarov,Relation between polynomials orthogonal with different weights (Russian). Dokl. Akad. Nauk SSSR126, 33–36 (1959).

    Google Scholar 

  12. V. B. Uvarov,The connection between systems of polynomials that are orthogonal with respect to different distribution functions (Russian). Ž. Vyčisl. Mat. i Mat. Fiz.9, 1253–1262 (1969). [English translation in: USSR Computational Math. and Mathem. Phys.9 (1969), No. 6, pp. 25–36.]

    Google Scholar 

  13. R. S. Varga,Matrix iterative analysis. Prentice-Hall, Englewood Cliffs, N.J. 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of the first author was supported, in part, by the National Science Foundation under Grant MCS-7927158. The work of the second author was supported, in part, by the National Science Foundation under Grant MCS-7610225.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautschi, W., Lynch, R.E. Error behavior in optimal relaxation methods. Z. angew. Math. Phys. 33, 24–35 (1982). https://doi.org/10.1007/BF00948310

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00948310

Keywords

Navigation