On existence and uniqueness in incremental thermoelasticity

  • C. B. Navarro
  • R. Quintanilla
Original Papers

Summary

Existence and uniqueness of solutions to the evolution equations which govern small thermoelastic deformations superposed on a general non-linear thermomechanical deformation is investigated. The problem is solved by means of the semigroup theory applied to the abstract temporally inhomogeneous equation arising in this case.

Keywords

Evolution Equation Mathematical Method Semigroup Theory Inhomogeneous Equation Thermoelastic Deformation 

Résumé

On étudie l'existence et l'unicité des solutions des équations qui gouvernent les petites déformations thermoélastiques superposés à un procés thermomécanique non linéaire général. Le problème est résolu à l'aide de la théorie des semigroupes apliquée à l'équation abstraite non homogène.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. H. England and A. E. Green,Steady state thermoelasticity for initially stressed bodies, Phil. Trans. R. Soc. London, Set A,253, 517–542 (1961).Google Scholar
  2. [2]
    A. E. Green,Thermoelastic stresses in initially stressed bodies, Proc. R. Soc. London, Set A,266, 1–19 (1962).Google Scholar
  3. [3]
    R. J. Knops and E. W. Wilkes,Theory of elastic stability, Handbuch der Physik, vol. VI a/3, C. Truesdell (ed.), Springer, Berlin 1973.Google Scholar
  4. [4]
    R. J. Knops and L. E. Payne,On uniqueness and continuous dependence in dynamical problems of linear thermoelasticity, Int. J. Solid Struct.,6, 1173–1184 (1970).Google Scholar
  5. [5]
    N. S. Wilkes,Continuous dependence and instability in linear thermoelasticity, SIAM J. Math. Anal.,11, 292–299 (1980).Google Scholar
  6. [6]
    D. Iesan,Incremental equations in thermoelasticity, J. Therm. Stresses,3, 41–56 (1980).Google Scholar
  7. [7]
    S. Chirita,Uniqueness and continuous dependence results for the incremental thermoelasticity, J. Therm. Stresses,5, 161–172 (1982).Google Scholar
  8. [8]
    O. D. Kellog,Foundations of potential theory, Springer-Verlag, New York 1967.Google Scholar
  9. [9]
    R. A. Adams,Sobolev spaces, Academic Press, New York 1975.Google Scholar
  10. [10]
    K. Yosida,Functional analysis, Springer-Verlag, Berlin 1968.Google Scholar
  11. [11]
    S. Mizohata,The theory of partial differential equations, Cambridge University Press, London 1973.Google Scholar
  12. [12]
    T. Kato,Linear evolution equations of hyperbolic type, II, J. Math. Soc. Japan,5 (1973).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1984

Authors and Affiliations

  • C. B. Navarro
    • 1
  • R. Quintanilla
    • 1
  1. 1.Dept. de Matemàtiques i Estadistica, Escola Tècnica Superior d'ArquitecturaUniversitat Politècnica de BarcelonaSpain

Personalised recommendations