Early detection of P-VEP and PERG changes in opthalmic Graves' disease

  • Leopoldo Spadea
  • Guido Bianco
  • Tommaso Dragani
  • Emilio Balestrazzi
Clinical Investigation

Abstract

• Background: In Graves' disease the optic neuropathy (ON) is due to direct compression of the nerve and/or of its blood supply. The aim of the present study was to detect early changes in the visual functions of patients affected by ophthalmic Graves' disease (OGD) by using electrophysiological tests (P-VEP and PERG). • Methods: We studied 50 OGD patients who were in a range between class 2 and class 5 according to the Donaldson-American Thyroid Association classification, i.e. had no evident ON and normal visual acuity. We recorded transient reversal PERG and P-VEP in response to the stimulation of one eye at three spatial frequencies (2.2, 1.1 and 0.5 c/d). • Results: Our results showed a statistically significant reduction in PERG amplitude in class 5, while the P-VEP amplitude was already reduced in class 2. • Conclusion: The electrofunctional tests were useful to detect small changes in the visual function of patients affected by initial stages of OGD. Therefore, P-VEP and PERG recordings appear to be a useful tool for early diagnosis of the optic nerve involvement in Graves' disease.

Keywords

Neuropathy Visual Acuity Early Diagnosis Optic Nerve Blood Supply 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi-Usami E (1990) Senescence of visual function as studied by visually evoked cortical potentials. Jpn J Ophthalmol 34:81–94Google Scholar
  2. 2.
    Bobak P, Friedman R, Brigell M, Goodwin J, Anderson R (1988) Visual evoked potentials to multiple temporal frequencies. Arch Ophthalmol 106:936–940Google Scholar
  3. 3.
    Burke W, Cottee LJ, Garvey J, Kumarasinghe R, Kriacou C (1986) Selective degeneration of optic nerve fibres in the cat produced by a pressure block. J Physiol 376:461–476Google Scholar
  4. 4.
    Coleman DJ, Dallow RL (1978) Ophthalmic ultrasonography, ocular ultrasonography, orbital ultrasonography. In: Duane FD (ed). Harper&Row, pp 25–27Google Scholar
  5. 5.
    Dallow RL, Momose KJ, Weber AL (1976) Comparison of ultrasonography, computerized tomography (EMI scan) and radiographic techniques in evaluation of exophthalmos. Trans Am Acad Ophthalmol Otolaryngol 81:305–322Google Scholar
  6. 6.
    Donaldson SS, Bagshaw MA, Kriss JP (1973) Supervoltage orbital radiotherapy for Graves' ophthalmopathy. J Clin Endocrinol Metab 37: 276–285Google Scholar
  7. 7.
    Esser J, Sobczynski H (1988) Therapiebegleitende Verlaufsbeobachtung der visuell evozierten kortikalen Potentiale bei Patienten mit endokriner Ophthalmopathie (Stadium 6). Fortschr Ophthalmol 85: 541–544Google Scholar
  8. 8.
    Gorman CA, Bahn RS (1989) Pathogenesis of Graves' ophthalmopathy. Dev Ophthalmol 20:1–7Google Scholar
  9. 9.
    Gorman CA, Waller RR, Dyer JA (1984) The eye and orbit in thyroid disease. Raven Press, New YorkGoogle Scholar
  10. 10.
    Holder GE, Condon JR (1989) Pattern visual evoked potentials and pattern electroretinograms in hypothyroidism. Doc Ophthalmol 73:127–131Google Scholar
  11. 11.
    Hufnagel TJ, Hickey WF, Cobbs WH, Jakobiec FA, Iwamoto T, Eagle RC (1984) Immunchistochemical and ultrastructural studies on the exenterated orbital tissue of a patient with Graves' disease. Ophthalmology 91:1411–1419Google Scholar
  12. 12.
    Kennerdell IS, Rosenbaum AE, El Hoshy MH (1981) Apical optic nerve compression of dysthyroid optic neuropathy on computed tomography. Arch Ophthalmol 99:807–809Google Scholar
  13. 13.
    Ladenson PW, Stakes JW, Ridgway EC (1984) Reversible alteration of the visual evoked potential in hypothyroidism. Am J Med 77:1010–3Google Scholar
  14. 14.
    Leone CR, Bajandas FJ (1981) Inferior orbital decompression for dysthyroid optic neuropathy. Ophthalmology 88:525–532Google Scholar
  15. 15.
    Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211: 953–955Google Scholar
  16. 16.
    Mastaglia FL, Black JL, Collins DWK, Gutteridge DH, Yeun RWM (1978) Slowing of conduction in visual pathway in hypothyroidism. Lancet i:387Google Scholar
  17. 17.
    Mitchell KW, Wood CM, Howe JW (1988) Pattern visual evoked potentials in hypothyroidism. Br J Ophthalmol 72:534–537Google Scholar
  18. 18.
    Neigel JM, Rottman J, Belkin RI (1988) Dysthyroid optic neuropathy. The crowded orbital apex syndrome. Ophthalmology 95:1515–1521Google Scholar
  19. 19.
    Pearlman JT, Burian HM (1964) Electroretinographic findings in thyroid dysfunction. Am J Ophthalmol 58:216–226Google Scholar
  20. 20.
    Spadea L, D'Amico M, Dragani T, Balestrazzi E (1994) Esami elettrofunzionali. Sintomi funzionali senza evidenze papillari. Proc. XV Corso APIMO 11 nervo ottico nella pratica clinica. Arbe, Modena, pp 63–72Google Scholar
  21. 21.
    Takahashi K, Fujitani Y (1970) Somatosensory and visual evoked potentials in hyperthyroidism. Electroencephalogr Clin Neurophysiol 29: 551–556Google Scholar
  22. 22.
    Trobe JD (1981) Optic nerve involvement in dysthyroidism. Ophthalmology 88:488–492Google Scholar
  23. 23.
    Van Ouerkerk BM, Wijngaarde R (1985) Radiotherapy of severe ophthalmic Graves' disease. J Endocrinol Invest 8: 241–247Google Scholar
  24. 24.
    Wijngaarde R, Van Lith GHM (1979) Pattern EPS in endocrine orbitopathy. Doc Ophthalmol 48: 327–332Google Scholar
  25. 25.
    Wirth A (1968) ERG and endocrine disorders. In: Francois J (ed) The clinical value of electroretinography. ISCERG Symposium, Ghent, 1966. Karger, Basel, pp 260–266Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Leopoldo Spadea
    • 1
    • 2
  • Guido Bianco
    • 1
  • Tommaso Dragani
    • 1
  • Emilio Balestrazzi
    • 1
  1. 1.Department of OphthalmologyUniversity of L'AquilaL'AquilaItaly
  2. 2.RomeItaly

Personalised recommendations