Skip to main content
Log in

The inviscid stability of swirling flows: Large wavenumber disturbances

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The inviscid stability of flows with both swirling and an axial component of velocity is studied in the limit of the axial and azimuthal wavenumber of the disturbance becoming large. Asymptotic results for the complex wavespeed are obtained and compare well with computed results, for the full problem, for the particular example of the trailing line vortex, and explain certain phenomena and difficulties found with numerical investigations of the problem. In particular, compared to previous studies, we present a fuller description of these higher order modes, which are often difficult to generate numerically.

Zusammenfassung

Es wird die reibungsfreie Stabilität von Strömungen untersucht, die sowohl azimutale als auch achsiale Geschwindigkeitskomponenten besitzen, im Grenzfall daß beide entsprechende Wellenzahlen groß werden. Es werden asymptotische Ergebnisse für die komplexe Wellengeschwindigkeit erhalten, die gut mit berechneten Werten übereinstimmen für das vollständige Problem sowie für ein besonderes Beispiel einer abgehenden Wirbellinie. Gewisse Erscheinigungen und Schwierigkeiten der numerischen Behandlung des Problems werden erörtert. Für feste achsiale und azimuthale Wellenzahlen wird eine vollständigere Beschreibung der höheren Ordnungen gegeben als bisher, da diese Lösungen nahe beieinander liegen (in Annäherung zu neutralen Lösungen) und deshalb numerisch schwer zu erzeugen sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Michalke and A. Timme, J. Fluid Mech.29, 647 (1967).

    Google Scholar 

  2. T. J. Pedley, J. Fluid Mech.31, 603 (1968).

    Google Scholar 

  3. T. J. Pedley, J. Fluid Mech.351, 97 (1969).

    Google Scholar 

  4. M. Lessen, N. V. Dashpende, and B. Hadji-Phanes, J. Fluid Mech.60, 459 (1973).

    Google Scholar 

  5. M. Lessen and P. J. Singh, J. Fluid Mech.60, 433 (1973).

    Google Scholar 

  6. M. Lessen, P. J. Singh and F. Paillet, J. Fluid Mech.63, 753 (1974).

    Google Scholar 

  7. G. K. Batchelor, J. Fluid Mech.20, 645 (1964).

    Google Scholar 

  8. P. W. Duck and M. R. Foster, J. Appl. Maths. Phys. (ZAMP)31, 524 (1980).

    Google Scholar 

  9. M. R. Foster and P. W. Duck, Phys. Fluids25, 1715 (1982).

    Google Scholar 

  10. R. R. Long, J. Fluid Mech.11, 611 (1961).

    Google Scholar 

  11. L. N. Howard and A. S. Gupta, J. Fluid Mech.14, 463 (1962).

    Google Scholar 

  12. S. Leibovich and K. Stewartson, J. Fluid Mech.126, 335 (1983).

    Google Scholar 

  13. O. R. Burggraf and M. R. Foster,The Stability of Tornado Like Vortices. Final Report, U. S. Dept. of Commerce, Grant 04-6-022-44004 (1975).

  14. A. Erdélyi (Ed),Higher Transcendental Functions, Vol. 2. McGraw Hill (1953).

  15. F. W. J. Olver, J. Research NBS63 B, 131 (1959).

    Google Scholar 

  16. P. F. Byrd and M. D. Friedman,Handbook of Elliptic Integrals for Engineers and Physicists. Springer Verlag, Berlin 1954.

    Google Scholar 

  17. K. Stewartson and K. Capell, J. Fluid Mech.156, 369 (1985).

    Google Scholar 

  18. K. Stewartson and S. Leibovich, to appear.

  19. F. W. Warren, Studies in Appl. Math. 59,249 (1978).

    Google Scholar 

  20. M. Lessen and F. Paillet, J. Fluid Mech.65, 769 (1974).

    Google Scholar 

  21. K. Stewartson, Phys. Fluids25, 1953 (1982).

    Google Scholar 

  22. S. Maslowe and K. Stewartson, Phys. Fluids25, 1517 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duck, P.W. The inviscid stability of swirling flows: Large wavenumber disturbances. Journal of Applied Mathematics and Physics (ZAMP) 37, 340–360 (1986). https://doi.org/10.1007/BF00946755

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00946755

Keywords

Navigation