Advertisement

Poiseuille flow through n-dimensional hypercircular and hyperelliptic cylinders

  • Howard Brenner
Brief Reports

Abstract

Results are given for unidirectional Poiseuille flows through hypercircular and hyperellipticn-dimensional cylinders. These agree with the known solutions forn=2 and 3, corresponding, respectively, to flow between two flat parallel plates and through a circular or elliptic cylinder.

Keywords

Mathematical Method Parallel Plate Poiseuille Flow Elliptic Cylinder Flat Parallel Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Für geradlinige Poiseuille-Strömung durchn-dimensionale Zylinder mit hyper-kreisförmigen und hyper-elliptischen Querschnitten werden Resultate angegeben. Diese stimmen mit den bekannten Lösungenn=2 undn=3 überein, d. h. mit der Strömung zwischen zwei parallelen Platten und in Zylindern mit kreisförmigen und elliptischen Querschnitten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Brenner,The translation and rotational motions of an n-dimensional hypersphere through a viscous fluid at small Reynolds numbers, J. Fluid Mech. (in press, 1981).Google Scholar
  2. [2]
    D. M. Y. Sommerville, An introduction to the geometry of N dimensions, Dover reprint, New York (1958).Google Scholar
  3. [3]
    J. Happel and H. Brenner,Low Reynolds number hydrodynamics, Sijthoff & Noordhoff, Alphen a. d. Rijn (1973).Google Scholar
  4. [4]
    A. Sommerfeld,Partial differential equations in physics, Academic Press, London (1964).Google Scholar
  5. [5]
    H. Bateman,Partial differential equations of mathematical physics, Dover, New York (1944).Google Scholar
  6. [6]
    M. Abramowitz and I. A. Stegun,Handbook of mathematical functions. U.S. National Bureau of Standards, Washington, D.C. (1964).Google Scholar
  7. [7]
    I-Shih Pai,Viscous flow theory. Vol. I:Laminar flow, van Nostrand, Princeton, New Jersey (1956).Google Scholar
  8. [8]
    R. Berker,Intégration des équations du mouvement d'un fluide visqueux incompressible, in: Handbuch der Physik (S. Flügge and C. Truesdell, editors), Volume VIII/2, Fluid Dynamics II, Springer-Verlag, Berlin (1963).Google Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • Howard Brenner
    • 1
  1. 1.Dept. of Chemical EngineeringUniversity of RochesterRochesterUSA

Personalised recommendations