The phase composition and reduction of CoO-Al2O3, MoO3-Al2O3, and CoO-MoO3-A12O3 catalysts

  • A. A. Slinkin
  • G. V. Antoshin
  • M. I. Loktev
  • E. S. Shpiro
  • S. B. Nikishenko
  • Kh. M. Minachev
Physical Chemistry
  • 28 Downloads

Conclusions

  1. 1.

    The method of photoelectron spectroscopy has been used to show that the Co and Mo ions of CoO-MoO3-Al2O3 catalysts interact with the γ-Al2O3 lattice, the Mo ions blocking the penetration of the Co ions. Formation of metallic Co promotes extensive Mo ion reduction.

     
  2. 2.

    Thermal treatment of the CoO-MoO3-Al2O3 catalyst in air tends to enrich the surface with respect to Mo ions, while reduction enriches the surface with respect to Co ions.

     
  3. 3.

    Oxidational treatment of the CoO-MoO3-Al2O3 and MoO3-Al2O3 catalysts is required for formation of anthracene radical-cations. A description is given of an oxidizing center structure which accounts for the reduction in acceptor activity of the Mo6+ ions in the ternary system.

     

Keywords

Spectroscopy Phase Composition Thermal Treatment Anthracene Ternary System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Lojacono, A. Cimino, and G. C. A. Schuit, Gazz. Chim. Ital.,103, 1281 (1973).Google Scholar
  2. 2.
    N. Giordano, J. C. J. Bart, A. Vaghi, A. Castellan, and G. Martinotti, J. Catal.,36, 81 (1975); 37, 204 (1975).Google Scholar
  3. 3.
    A. Cimino and B. A. de Angellis, J. Catal.,36, 11 (1975).Google Scholar
  4. 4.
    F. E. Mossoth, J. Catal.,30, 204 (1973).Google Scholar
  5. 5.
    M. Lojacono, J. L. Verbeek, and G. C. A. Schuit, J. Catal.,29, 463 (1973).Google Scholar
  6. 6.
    K. S. Seshadri and L. Petrakis, J. Catal.,30, 195 (1973).Google Scholar
  7. 7.
    A. Ismageel-Milanovic, J. M. Basset, H. Praliaud, M. Dufaux, and L. de Mourguess, J. Catal.,31, 408 (1973).Google Scholar
  8. 8.
    G. Martini, J. Magn. Reson.,15, 262 (1974).Google Scholar
  9. 9.
    S. Abdo, M. Lojacono, R. B. Clarkson, and V. K. Hall, J. Catal.,36, 330 (1975).Google Scholar
  10. 10.
    V. M. Vorotyntsev, V. A. Shvets, and V. B. Kazanskii, Kinet. Katal.,12, 1949 (1971).Google Scholar
  11. 11.
    O. V. Krylov, G. B. Pariiski, and K. N. Spiridonov, J. Catal.,23, 301 (1971).Google Scholar
  12. 12.
    R. F. Howe and J. R. Leith, J. Chem. Soc. Faraday Trans.,69, 1967 (1973).Google Scholar
  13. 13.
    C. Naccache, J. Bandura, and M. Dufaux, J. Catal.,25, 334 (1972).Google Scholar
  14. 14.
    H. Ueda, N. Todo, and M. Kurita, J. Less-Common Metals,36, 387 (1974).Google Scholar
  15. 15.
    H. Ueda, J. Nat. Chem. Lab. Ind.,70, 24 (1975).Google Scholar
  16. 16.
    H. Ueda and N. Todo, J. Nat. Chem. Lab. Ind.,69, 250 (1974).Google Scholar
  17. 17.
    L. Petrakis and K. S. Seshadri, J. Catal.,36, 351 (1975).Google Scholar
  18. 18.
    Kh. M. Minachev, G. V. Antoshin, and E. S. Shpiro, Probl. Kinet. Katal.,16, 188 (1975).Google Scholar
  19. 19.
    A. W. Miller, W. Atkinson, M. Barber, and P. Swift, J. Catal.,22, 140 (1971).Google Scholar
  20. 20.
    R. M. Friedman, R. J. Declerk-Grimee, and J. J. Fripiat, J. Electron. Spectrosc.,5, 437 (1974).Google Scholar
  21. 21.
    E. L. Aptekar', M. G. Chudinov, A. M. Alekseev, and O. V. Krylov, Soobshch. Kinet. Katal.1, 493 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • A. A. Slinkin
    • 1
  • G. V. Antoshin
    • 1
  • M. I. Loktev
    • 1
  • E. S. Shpiro
    • 1
  • S. B. Nikishenko
    • 1
  • Kh. M. Minachev
    • 1
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRMoscow

Personalised recommendations