Extended canonical transformations with redundant variables: Hamiltonian and Lagrangean formulations and degeneration

  • José-Manuel Ferrándiz
  • María-Eugenia Sansaturio
Original Papers


Given a point transformation from a certain domain in ℝ m onto a space of lower dimension, we offer a general method to extend it to a canonical transformation increasing the number of variables, in the sense of Scheifele. It has the property of becoming completely automatic after a choice of some adequate constraints, and can even be performed by symbolic manipulation. Questions of degeneration associated to the introduction of redundant variables are also considered, as well as the relations with the corresponding generalized Lagrangean formalism. The paper is completed by examples showing the most popular among those transformations, so that the convenience of the new approach can be easily appreciated.


Mathematical Method Lower Dimension Lagrangean Formalism Canonical Transformation Point Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Broucke, R., Lass, H. and Ananda, M.,Redundant variables in celestial mechanics. Astrom. & Astrophys.13, 390–398 (1971).Google Scholar
  2. Broucke, R. and Lass, H.,On redundant variables in Lagrangian mechanics, with application to perturbation theory and KS regularization. Celest. Mech.12, 317–325 (1975).Google Scholar
  3. Burdet, C. A.,Le mouvement Képlérien et les oscillateurs harmoniques. J. reine und. angew. Math.238, 71–84 (1969).Google Scholar
  4. Cid, R. and Sansaturio, M. E.,Motion of rigid bodies in a set of redundant variables. Celest. Mech.42, 263–277 (1988).Google Scholar
  5. Deprit, A., Elipe, A. and Ferrer, S.,Linearization: Laplace vs. Stiefel. Celest. Mech. (to appear in February Volume 58) (1994).Google Scholar
  6. Ferrándiz, J. M.,A New Set of Canonical Variables for Orbit Calculation. ESA SP-255, Darmstadt, Germany, pp. 361–364, 1986.Google Scholar
  7. Ferrándiz, J. M.,Extended canonical transformations increasing the number of variables, from Roy. A. E. (ed.)Long-term Dynamical Behaviour of Natural and Artificial N-Body Systems, Kluwer Acad. Publ., NATO ASI Series C, Vol. 246, pp. 377–383, 1988.Google Scholar
  8. Ferrándiz, J. M., Sansaturio, M. E. and Pojman, J. R.,Increased accuracy of computations in the main satellite problem through linearization methods. Celest. Mech.53, 347–363 (1992a).Google Scholar
  9. Ferrándiz, J. M., Sansaturio, M. E. and Vigo, J.,On the accurate numerical computation of highly eccentric orbits. Paper AAS92-193, Advances in the Astronautical Sciences. Vol. 79, part II, pp. 1185–1204, 1992b.Google Scholar
  10. Heggie, D.,A global regularization of the gravitational N-body problem. Celest. Mech.10, 217–241 (1974).Google Scholar
  11. Kurcheeva, I. W.,Kustaanheimo-Stiefel regularization and nonclassical canonical transformations. Celest. Mech.15, 353–365 (1977).Google Scholar
  12. Lidov, M. L.,Increasing the dimensions of Hamiltonian systems, the KS-transformation and application of particular integrals. Kosm. Issled.20, no. 2, 163–176 (1982).Google Scholar
  13. Losco, L.,Les systèmes Lagrangiens dégénerés. Celest. Mech.21, 99–176 (1980).Google Scholar
  14. Maciejewski, A. J.,Hamiltonian formalism for Euler parameters. Celest. Mech.37, 47–57 (1985).Google Scholar
  15. Moser, J., Guckenheimer, J. and Newhouse, S.,Dynamical Systems, Birkhauser, Basel 1980, Chapter 3, §5.Google Scholar
  16. Pascal, M.,A note on the correspondence between Mathieu's transformations and redundant variables in Lagrangian mechanics. Celest. Mech.24, 53–61 (1981).Google Scholar
  17. Sansaturio, M. E.,Movimiento de sólidos en un conjunto superabundante de variables. Aplicación al sólido pesado. Ph.D. dissertation. Facultad de Ciencias de la Universidad de Zaragoza 1986.Google Scholar
  18. Scheifele, G.,On nonclassical canonical systems. Celest. Mech.2, 296–310 (1970).Google Scholar
  19. Stiefel, E. L. and Scheifele, G.,Linear and Regular Celestial Mechanics. Springer, New York 1971.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • José-Manuel Ferrándiz
    • 1
  • María-Eugenia Sansaturio
    • 1
  1. 1.Dpto. de Matemática Aplicada a la IngenieríaE.T.S. de Ingenieros IndustrialesValladolidSpain

Personalised recommendations