Advertisement

Stability of Pflüger's column with imperfections

  • Teodor M. Atanackovic
  • Alvin M. Strauss
Original Papers

Abstract

The stability of a column loaded with continuously distributed tangential load is analyzed. It is assumed that imperfections in the shape (initial deformation) and loading (a small concentrated force) are present. It is shown that the influence of the imperfections is modelled by a Whithney cusp.

Keywords

Mathematical Method Concentrate Force Initial Deformation Tangential Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Pflüger,Stabilitätsprobleme der Elastostatik, 3. Aufl. Springer, Berlin 1975.Google Scholar
  2. [2]
    H. Leipholz,Stability Theory. Academic Press, New York 1970.Google Scholar
  3. [3]
    H. Leipholz,Über ein Kriterion für Gültigkeit der statischen Methode zur Bestimmung der Knicklast von elastischen Stäben unter nichtkonservativer Belastüng. Ing. Archiv32, 286–296 (1963).Google Scholar
  4. [4]
    J. A. Walker,Liapunov analysis of the generalized Pflüger problem. J. Appl. Mech., Trans. ASME, 935–938 (1972).Google Scholar
  5. [5]
    M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions. U.S. Government Printing Office, Washington, DC 1964.Google Scholar
  6. [6]
    S.-N. Chow and J. K. Hale,Methods of Bifurcation Theory. Springer, New York 1982.Google Scholar
  7. [7]
    M. Golubitsky and D. Schaeffer,Singularities and Groups in Bifurcation Theory, Vol. 1. Springer, Berlin 1985.Google Scholar
  8. [8]
    M. Golubitsky and D. Schaeffer,A theory for imperfect bifurcation via singularity theory. Comm. Pure Appl. Math.32, 1–98 (1979).Google Scholar
  9. [9]
    G. Iooss and D. D. Joseph,Elementary Stability and Bifurcation Theory. Springer, New York 1980.Google Scholar
  10. [10]
    V. S. Vladimirov,Generalized Functions in Mathematical Physics. Mir, Moscow 1979.Google Scholar

Copyright information

© Birkhäuser Verlag 1987

Authors and Affiliations

  • Teodor M. Atanackovic
    • 1
  • Alvin M. Strauss
    • 2
  1. 1.Faculty of Technical SciencesNovi SadYugoslavia
  2. 2.Vanderbilt UniversityNashvilleUSA

Personalised recommendations