Skip to main content
Log in

The development of a bedform disturbance in an alluvial river or channel

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The evolution of a localized disturbance imposed upon an otherwise uniform alluvial flow is considered. For small disturbances a linearized theory is developed which shows that the initial disturbance splits into two modes. One mode is stationary and purely diffusive while the other mode propagates. The propagating mode may exhibit diffusion or, for sufficiently high Froude numbers instability of the “roll-wave” type. The theory provides the relevant diffusion, propagation and instability time scales associates with the two modes.

For finite amplitude disturbances, a weakly nonlinear theory is considered. Again the disturbance separates into two modes. The stationary mode remains as a solution of the diffusion equation, but the propagating mode is now governed by a Burger's equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Cunge, F. M. Holly and A. Verwey,Practical Aspects of Computational River Hydraulics. Pitman, London 1981.

    Google Scholar 

  2. R. Bettess and W. R. White,A one-dimensional morphological river model. Hydraulics Research Station, Wallingford, report no. IT 194 (1979).

    Google Scholar 

  3. W. Peter,Numerical Modelling of the Alpine Rhine. Hydraulics Research Station, Wallingford, report no. IT 220 (1981).

    Google Scholar 

  4. J. S. Ribberink and J. T. M. Van Der Sande, J. Hydraulic Res.23, 273–283 (1985).

    Google Scholar 

  5. P. J. Mehta, R. J. Garde and K. G. Ranga Raju,In 2nd. Symp. on River Sedimentation. Water Resources and Electric Power Press 1983.

  6. J. F. Kennedy, J. Fluid Mech.1, 521–544 (1963).

    Google Scholar 

  7. J. F. Kennedy, Ann. Rev. Fluid Mech.1, 147–168 (1969).

    Google Scholar 

  8. A. J. Reynolds, J. Fluid Mech.22, 113–134.

  9. K. O. Friedrichs, Comm. Appl. Math.1, 81–85 (1948).

    Google Scholar 

  10. J. J. Stoker, Water Waves. Interscience, New York 1957.

  11. M. B. Abbott,Computational Hydraulics. Pitman, London 1979.

    Google Scholar 

  12. Sir Harold Jeffreys, Phil. Mag.47, 793–807 (1925).

    Google Scholar 

  13. A. H. Gibson,Hydraulics and its Applications. Constable, London 1934.

    Google Scholar 

  14. V. T. Chow,Open-Channel Hydraulics. McGraw-Hill, New York 1959.

    Google Scholar 

  15. M. S. Yalin,Mechanics of Sediment Transport. Pergamon Press, Oxford 1977.

    Google Scholar 

  16. W. R. White, H. Milli and A. D. Crabbe. Proc. Inst. Civ. Engrs. 2, 265–292 (1975).

    Google Scholar 

  17. W. R. Brownlie,Prediction of flow depth and sediment discharge in open channels, W. M. Keck Laboratory of Hydraulics and Water Resources. California Institute of Technology, report no. KH-R-43A (1981).

  18. E. Meyer-Peter and R. Muller, In Proc. 2nd Congress IAHR, Stockholm 1948.

  19. M. de Vries, Riverbed bed Variations, Aggradation and Degradation, IAHR Seminar, New Delhi 1973.

  20. A. H. Nayfeh,Perturbation Methods. Wiley-Interscience, New York 1973.

    Google Scholar 

  21. M. Van Dyke,Perturbation Methods in Fluid Mechanics. Parabolic Press, Stanford 1975.

    Google Scholar 

  22. R. F. Dressler, Communs. Pure Appl. Math.2, 149–194 (1949).

    Google Scholar 

  23. D. J. Needham and J. H. Merkin, Proc. R. Soc. Lond.A394, 259–278 (1984).

    Google Scholar 

  24. J. H. Merkin and D. J. Needham, Proc. R. Soc. Lond.A405, 103–116 (1986).

    Google Scholar 

  25. R. P. Sharp and L. H. Nobles, Geol. Soc. America Bull.64, 547–560 (1953).

    Google Scholar 

  26. D. M. Morton and R. H. Campbell, Quart. J. Eng. Geol.7, 377–384 (1974).

    Google Scholar 

  27. G. Williams and J. Costa, Mudflows,Video of mud and debris flows released as a US Geological Survey. Open-file report, Denver, Colorado 1985.

  28. C. R. Thorn, J. S. Bathhurst and R. D. Hey,Sediment Transport in gravel bed rivers. Wiley, Chichester 1986.

    Google Scholar 

  29. J. D. Murray,Asymptotic Analysis. Clarendon, Oxford 1974.

    Google Scholar 

  30. G. B. Whitham,Linear and Nonlinear Waves. Wiley/Interscience, Chichester 1974.

    Google Scholar 

  31. M. A. Gill, J. Hydraulic Res.21, 355–367 (1983).

    Google Scholar 

  32. M. A. Gill, J. Hydraulic Res.21, 367–378 (1983).

    Google Scholar 

  33. C. B. Vreugdenhill, In Eng. Applications of Computational Hydraulics (ed. M. B. Abbotts and J. A. Cunge). Pitman, London 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Needham, D.J. The development of a bedform disturbance in an alluvial river or channel. Z. angew. Math. Phys. 39, 28–49 (1988). https://doi.org/10.1007/BF00945720

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00945720

Keywords

Navigation