Theoretical and Experimental Chemistry

, Volume 1, Issue 2, pp 167–170 | Cite as

Interaction of polyphenylacetylene with electron-acceptor molecules

  • V. V. Pen'kovskii
  • V. S. Kuts


ESR spectra show that the number of paramagnetic centers in polyphenylacetylene (PPA) is linearly related to the oxygen pressure; iodine has an even more marked effect, the limiting concentration (7×1018 spins per g) being reached for a molar ratio of PPA to iodine of 1∶6. The central part of the ESR line is lorentzian, with gaussian wings. A Lorenz curve fits a large fraction of the spectrum for PPA-iodine. The delocalization region for the unpaired electron corresponds to two units of PPA for oxygen and one for iodine. The results are interpreted in terms of charge-transfer complexes (CTC) between the PPA and electron acceptor (oxygen or iodine). Microwave saturation occurs in pumped PPA; loss of saturation is related to the formation of CTC.


Oxygen Microwave Iodine Electron Acceptor Large Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Berlin, Khim. Prom., 375, 1960; 881, 1962.Google Scholar
  2. 2.
    V. V. Pen'kovskii, Usp. Khim., 33, 1232, 1964.Google Scholar
  3. 3.
    L. A. Blyumenfel'd and V. A. Benderskii, DAN SSSR, 133, 1451, 1960.Google Scholar
  4. 4.
    V. A. Benderskii and L. A. Blyumenfel'd, DAN SSSR, 144, 813, 1962.Google Scholar
  5. 5.
    L. A. Blyumenfel'd and V. A. Benderskii, Zh. Strukt. Khim., 4, 405, 1963.Google Scholar
  6. 6.
    A. V. Phelps and J. L. Pack, Phys. Rev. Letters, 6, III, 1961.Google Scholar
  7. 7.
    R. K. Curran, J. Chem. Phys., 35, 1849, 1961.Google Scholar
  8. 8.
    B. Person, J. Chem. Phys., 38, 109, 1963.Google Scholar
  9. 9.
    D. F. Evans, J. Chem. Soc., 345, 1953; 1351, 3887, 1957.Google Scholar
  10. 10.
    H. Tsubomura and R. S. Mulliken, J. Am. Chem. Soc., 82, 5966, 1960.Google Scholar
  11. 11.
    H. Kuroda, J. Chem. Phys., 33, 1586, 1960.Google Scholar
  12. 12.
    Y. Matsunaga, Can. J. Chem., 38, 323, 1960.Google Scholar
  13. 13.
    W. I. Aalbersberg et al., J. Chem. Soc. 905, 1961.Google Scholar
  14. 14.
    L. E. Orgel, Quart. Rev. 8, 422, 1954.Google Scholar
  15. 15.
    H. Inokuti and H. Akamatu, The Electrical Conductivity of Organic Semiconductors [Russian translation], IL, Moscow, chapter VI, 1963.Google Scholar
  16. 16.
    Organic Semiconductors [in Russian], Izd. AN SSSR, Moscow, chapter XI, 1963.Google Scholar
  17. 17.
    V. A. Benderskii et al., Collection: Carbon-Chain Macromolecular Compounds [in Russian], Izd. AN SSSR, Moscow, p. 253, 1963.Google Scholar
  18. 18.
    A. A. Berlin et al., Vysokomol. Soed., 1, 1817, 1959.Google Scholar
  19. 19.
    Yu. N. Nedoshivin and V. I. Kasatochkin, Zh. Fiz. Khim., 37, 1162, 1963.Google Scholar
  20. 20.
    E. G. Sharoyan et al., Zh. Strukt. Khim., 5, 697, 1964.Google Scholar
  21. 21.
    P. S. Shantarovich and O. B. Salamatina, Zh. Obshch. Khim., 34, 2298, 1964.Google Scholar
  22. 22.
    J. H. Van-Vleck, Phys. Rev., 74, 1168, 1948.Google Scholar
  23. 23.
    P. W. Anderson and P. R. Weiss, Rev. Mod. Phys., 25, 269, 1953.Google Scholar
  24. 24.
    N. N. Tikhomirova and V. V. Voevodskii, Optika i Spektroskopiya, 7, 829, 1959.Google Scholar
  25. 25.
    S. P. Solodovnikov and V. V. Voevodskii, Optika i Spektroskopiya, 12, 32, 1962.Google Scholar
  26. 26.
    K. H. Hausser, Naturwiss., 47, 251, 1960.Google Scholar
  27. 27.
    L. E. Orgel and R. S. Mulliken, J. Am. Chem. Soc., 79, 4839, 1957.Google Scholar
  28. 28.
    A. A. Berlin and M. I. Cherkashin, Izv. AN SSSR, OKhN, 568, 1964.Google Scholar

Copyright information

© The Faraday Press, Inc. 1966

Authors and Affiliations

  • V. V. Pen'kovskii
    • 1
  • V. S. Kuts
    • 1
  1. 1.Pisarzhevskii Institute of Physical ChemistryAS UkrSSRKiev

Personalised recommendations